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Abstract - Industry 4.0 revolution aimed at transforming 
factories from automated to smart and intelligent. To fulfil 
that challenge, the research idea proposed herewith, 
implementing prognosis approach for Predictive Maintenance 
on Gas Turbine. Gas turbine (GT) based turbofan engines are 
recognized for their high availability and reliability and are 
used for aero, marine and power generation applications. 
Maintenance of this complex machinery should be done 
proactively to prevent premature failure, reduce the overall 
cost by avoiding unnecessary maintenance task. This goal is 
achieved by estimating the Remaining Useful Life (RUL) of GT. 
The RUL is very important information to decision-makers and 
planners for upcoming maintenance activity. This paper aims 
to explore the use of neural network models to predict RUL. In 
recent years researchers have proposed several machine 
learning, data driven and neural network approaches for 
predicting RUL. This paper investigates the effect of the 
Convolutional Neural Network (CNN) in RUL Estimation. The 
experimental study compares this approach to purely LSTM. 
This result suggests the CNN is a promising model in 
estimating RUL of time series dataset for GT even in the case of 
rare events.  
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1. INTRODUCTION  
 
1.1 Gas Turbine 

Gas turbine is the combustion engine. It is working by 

sucking air into the front of the engine using a fan. From 

there, the engine compresses the air, mixes fuel with it, 

ignites the fuel/air mixture, and shoots it out the back of the 

engine, creating thrust in case of turbofan engine [2] 

whereas in case of powerplant gas turbine it will generate 

the electrical energy. Two main applications of Gas Turbine 

engine are Turbofan engines and powerplant gas. Gas 

turbine-based Turbofan engine has been considered for the 

present research work. Gas turbine-based turbofan is one of 

the complex types of machinery, running 24/7 requires 

effective maintenance strategy to reduce downtime and for 

increased reliability and availability. 

1.2 Types of Maintenance 

The failure of GT engine is often a significant cause of major 
accidents and causalities. To prevent these causes, detecting 
primary degradation is essential. In the field of aircraft 
maintenance, traditional maintenance is either purely 
reactive (fixing or replacing an aircraft engine component 
after it’s complete failure) or blindly proactive (assuming a 
certain level of performance degradation with no input from 
the aircraft engine itself and maintaining the aircraft engine 
on a routine schedule whether maintenance is needed or 
not). Both scenarios are quite wasteful and inefficient, and 
neither is conducted in real-time [7]. These kinds of 
Improper maintenance may lead to an increased rate of 
deterioration. Due to that maintenance cost may also reach 
up to 35% of operating cost [5]. Scheduling of maintenance 
activity based on fault diagnosis, performance degradation 
assessment and the predicted remaining useful life of the gas 
turbine and the need to prevent faults in advance, 
prognostics and health management (PHM) is gradually 
replacing these two maintenance strategies. [7] 
 

 
 

Fig-1: Types of Maintenance 

1.3 Predictive Maintenance using IoT 

Simple Predictive maintenance is a maintenance 
methodology that involves monitoring the health of a 
machine and applying predictive modelling techniques in 
order to predict the likelihood of failure of the machine and a 
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time estimate of its probable occurrence [6]. Whereas, 
Predictive maintenance in the Internet of Things (IoT) era 
can be summarized as a maintenance methodology that 
brings together the power of machine learning and streaming 
sensor data to maintain machines before, they fail, optimize 
resources, and thereby reduce unplanned downtime. This is 
where IIoT helps in terms of providing all the data in the 
framework to make a meaningful assessment. [6] 

1.4 Prognosis Approach 

The main reason of sudden failures is that the diagnostics 
system cannot catch fault progression. To avoid such failures, 
the maintenance strategy needs to be changed from fail and 
fix to predict and prevent. In other words, instead of being 
reactive to be proactive. Prognostics is the main driver to 
proactivity [8]. Prognostics can be defined as a remaining 
useful life (RUL) estimation process of 
system/subsystem/component. In the beginning of life (BoL), 
the system operates normally with its full health. When the 
system starts to degrade, this can be considered as a trigger 
point to the prognostics system. The prognostics system 
continues to operate and performs RUL estimation at 
subsequent prediction points. In the same time, prognostics 
information is the main driver for condition-based 
maintenance (CBM) [8].  

1.5 Estimating Remaining Useful Life (RUL) 

There are three main classes of RUL prediction methods: (1.) 
data-driven methods, (2.) physics model-based methods, and 
(3.) methods that combine data-driven and physics model-
based methods. The data-driven methods use past condition 
monitoring data, the current health status of the system, and 
data on the degradation of similar systems. There are two 
main challenges in prognostics based on physics: (1.) there is 
not enough physical knowledge to construct a physical 
degradation model and (2.) the values of the physical model’s 
parameters are difficult to determine exactly. Therefore, it is 
important to understand the failure mechanism of the system 
correctly, and experienced personnel are required for 
physics-based models. Therefore, the requirements of data-
driven methods to model the degradation and predict the 
RUL are easier to satisfy. [7] 

The performance of many data-driven prognostics methods is 
heavily dependent on the choice of the performance 
degradation data to which they are applied. However, engines 
have many sensor parameters. The sensitivity of the data 
from different sensors varies in terms of showing engine 
performance degradation; the data from some sensors are 
sensitive and the data from other sensors are not sensitive. 
Therefore, it is necessary to select suitable sensor parameters 
whose data are more sensitive to the engine’s performance 
degradation trend as the training data for the RUL prediction 
model. [7] 

Three problems hinder the implementation of performance 
degradation feature extraction in practice. The traditional 
methods of extracting performance degradation features for 
prognostics are unsupervised and cannot automatically 
adjust the feature extraction modal parameters based on 
feedback from the prediction. Such feature extraction and 

choice are significant but represent a principal shortcoming 
of popular prognostics algorithms: the inability to extract and 
organize discriminatively or trend information from data. 
Therefore, it is important to develop an automatic feature 
extraction method that can extract the prominent feature to 
achieve better insight into the underlying performance 
degradation state. Deep learning, a new method that has been 
put forward in the last few years, can be used to extract 
multilevel features from data, which means the method could 
express data at different levels of abstraction. Deep learning 
is an end-to-end machine learning system.[7] Based on the 
present literature survey Convolutional Neural Network 
(CNN) is the one which is selected among all the Deep neural 
network approaches for the present research. CNN accepts 
the image as an input for that reason time series to image 
conversion is to be done. There are so many methods 
available to transform time series to images. 

1.6 Imaging Timeseries 

Recently, great results have been achieved by processing data 
with deep learning techniques, and, specifically, by using 
convolutional neural networks (CNN) with images as input. 
In scenarios where input data isn’t formatted as an image, 
many transformation methods have helped apply CNNs to 
other data types. Time series is one of these data structures 
that can be modelled to approach the problem from a 
computer vision perspective.[28] 

Recurrence plots are an advanced technique for visually 
representing multivariate non-linear data. This refers to a 
graph representing a matrix, where elements correspond to 
those times at which the data recurs to a certain state or 
phase. Recurrent behavior, such as periodicities or irregular 
cyclicities, is a fundamental property of deterministic 
dynamical systems, like non-linear or chaotic systems. As 
higher dimensional datasets can’t be pictured easily, they can 
only be visualized by projection onto 2D or 3D sub-spaces. 
Recurrence plots enables the visualization of the mm-
dimensional phase space through a two-dimensional 
representation of its recurrence. This recurrence of a certain 
state at time ii at a different time jj is marked within a 2D 
squared matrix and can be mathematically expressed as: [28] 

 

The main advantage of using recurrence plots is being able to 
visually inspect any higher dimensional phase space 
trajectories by obtaining an image that hints at how the series 
evolve over time. [28] 

2. PRIOR ART SEARCH 
 
While proceeding with the research work, various 
approaches for the Predictive Maintenance using Prognosis 
approach have been analyzed in the prior art search. For 
predictive maintenance on Gas Turbine total, 4 research 
papers have been referred. As shown earlier predictive 
maintenance can be divided further in two parts. One is a 
diagnosis and other is the prognosis. Now prognosis can be 
done using Machine Learning approach, Data driven 
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approach or even using neural network. In the below table all 
the literatures are classified in different approaches.  

 
Fig-2: Taxonomy of Prior Art Search 

 
Fig-3: Classification of Literatures in different Approaches 

for Prognostics 

The purpose of this paper is to investigate the use of Deep 
learning-based models, to find remaining operational cycles 
(RUL) before failure in the test set in case of GT, which is the 
main objective of the present research work. As a supportive 
objectives Prognosis approach is used for performing 
predictive maintenance, Recurrence Plot method to transfer 
time series into images and Convolutional Neural Network 
has been selected to classify the data to find the remaining 
operational cycle. 

3. DATASET DESCRIPTION 
 
The Turbofan Engine Degradation Simulation Data Set by the 
Prognostic Center of Excellence of National Aeronautics and 
Space Administration (NASA) is used in the present research 
work. This data set was created by synthetic data collected 
from a thermodynamic simulation model called C-MAPSS 
(Commercial Modular Aero-Propulsion System Simulation). 
The simulator consists of 14 input parameters and 21 output 
parameters are reported in the data set. Each turbofan unit 
provides the following information: [13] The data set consists 
of multiple time series divided into 4 training and test 
subsets, both identified by the names: FD001, FD002, FD003 
and FD004 (see fig-4). The whole data set contains sensor 
data from several turbofans, which operate normally at the 
beginning of the recording and eventually they develop a 
failure. [13]. 

 

Fig-4 (a) 

 

Fig-4 (b) 

Fig-4: Dataset Description 

There are two failure modes: high-pressure compressor 
degradation and fan degradation. As per the fig-4 (a). 

4. METHODOLOGY 
 
This section introduces the relevant procedure used in this 
research. As shown in Fig -5, the whole procedure for RUL 
prediction for a gas turbine-based turbofan engine consists of 
two main steps: data pre-processing and RUL prediction 
using CNN & LSTM. 

 

Fig-5: Overall Framework 

Once the target asset selection is done, dataset must get 
prepared before applying Machine Learning Models. Data 
gathering, RUL calculation, data scaling and normalization 
and feature selection all these steps come under data 
preparation/preprocessing part. As CNN is only taking images 
as an input, so in this present research work timeseries data has 
been converted into the images. This will be one additional 
preprocessing step in case of CNN. At last training, testing and 
evaluation of the model will be held. Finally, RUL estimation 
shown as an output. 

4.1 Data Gathering 

Usually, the gas turbine-based turbofan engine is operating 
normally, at the starting of each time series and develops a 
fault at some point of time during the series. In the training 
set, the data recording ends when the turbofan stops working 
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completely due to the failure, representing a data base of 
turbofans that failed during operation. On the other hand, in 
the test set, the time series terminates sometime before the 
system stops working, representing a data base of turbofans 
in the current operation.  

4.2 Data Preparation 

Feature Selection, Data Normalization & RUL calculation are 
commonly coming under the Data Preparation step. Training 
& testing dataset will be pre-processed to achieve better 
results having good accuracy.  

4.2.1 Feature Selection  

Different sensors in gas turbine-based turbofan engine are 
having very different responses to the performance 
degradation process. Some sensors show unclear inclinations 
because of noise or insensitivity to degradation trends. 
Choosing unresponsive parameter data may reduce the RUL 
estimation accuracy. To improve the performance of the 
estimation model, sensors that are more responsive to the 
performance degradation process are chosen as inputs to the 
RUL estimation model. 

4.2.2 Prepare Target columns 

To train the model for RUL estimation, it is necessary to have 
a set of input and output data columns. Where the input data 
is the information recorded from several sensors and the 
output data is the RUL. However, databases for prognosis 
applications do not often contain the RUL information for 
training because, in many industrial applications, it is 
impossible to accurately assess the RUL information. 
Therefore, one should derive the RUL column (i.e. the time 
remaining before the end of each turbofan data recording), it 
can be derived as follows: 

RUL Derivation: 

 

Let say, ‘u’ is unit number and each unit contain ‘i’ number of 
cycles. To calculate RUL, firstly the last cycle of each unit has 
been searched which denoted here as X. Likewise, RUL for 
each row will be calculated. In the case of regression, RUL 
column having continuous values is enough. 

Labelling: 

In the case of classification approach, one more column 
containing class labels needs to be derived. Which will be 
derived from RUL column. 

For 0 to 15 remaining cycles, the given label is 2, 16 to 45 
remaining cycles are labelled as 1 and for the RUL which are 
greater than 45 will be classified as 0. It is clear that in reality, 
the category labelled as 2 is the most economically valuable. 
Except for the convolutional neural network, data 
preparation part for other models are done up to this step. 

 

 

4.2.3 Data Normalization:  

After the elimination of some constant columns and selection 
of informative columns, the linear function (i.e. min-max 
normalization function) that best preserves the original 
performance degradation pattern of the aircraft engine is 
chosen to map the data for each selected sensor to [-1, 1].  
 
4.3 Transform Time series to images 

4.3.1 Recurrence Plot 

As CNN model is being used to 
estimate the RUL, the 
transformation of whole 
preprocessed time series dataset 
into images are must be needed. 
That has been achieved with the 
help of the recurrence plot method. 

Fig-6: Sample Recurrence 

Plot of size 50x50x17 

This image is an example of a recurrence plot which is 
nothing but the resultant representation.     

To achieve the recurrence plot first extraction of the time 
series sequence is to be done. 

4.3.2 Generating Sequence for transforming time-series 
into images 

As an example, Unit 1 contains 192 cycles and consider 
window size as a 50. As a result of this generating sequence 
process, the total 142 sequences are generated of 50 window 
size as shown in fig-7. 

 

Fig-7: Scenario of Timeseries Window Generation 

Finally, at this stage preprocessing part for every Machine 
Learning model is completed. 

4.4 Model Selection & Building 

4.4.1 Model 1: CNN 

Convolutional neural networks (CNNs) are a category of 
neural networks that have proven very effective in areas such 
as image recognition and classification. CNNs have been 
successful in identifying faces, objects, and traffic signs in 
addition to powering vision in robots and self-driving cars. 
CNNs derive their name from the “convolution” operator. The 
primary purpose of convolution in the case of CNNs is to 
extract features from the input image. the model learns how 
to automatically extract the features from the raw data that 
are directly useful for the problem being addressed. This is 
called “representation learning”. The ability of CNNs to learn 
and automatically extract features from raw input data can be 
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applied to time series forecasting problems. A sequence of 
observations can be treated like a one-dimensional image 
that a CNN model can read and refine into the most 
appropriate elements. This capacity of CNN has been proved 
to great effect on the time series classification task of turbo 
fan’s remaining operational cycles prediction [26].  

 

Fig-8: CNN Model Architecture 

4.4.2 Model 2: LSTM 

The Long Short-Term Memory network (LSTM) network, is a 
recurrent neural network that is trained using 
Backpropagation Through Time and overcomes the vanishing 
gradient problem. Instead of neurons, LSTM networks have 
memory blocks that are connected through layers. LSTM is 
capable of learning long-term dependencies. LSTMs are 
explicitly designed to avoid the long-term dependency 
problem. Remembering information for long periods is 
practically their default behavior, not something they 
struggle to learn! All recurrent neural networks have the 
form of a chain of repeating modules of the neural network. 
In standard RNNs, this repeating module will have a very 
simple structure, such as a single tanh layer [35]. 

 

Fig-9: LSTM Model Architecture 

4.5 Training, testing & validation 

In this phase, by considering the randomly initialized 
parameters, training will be done. While training, cross-
validation is done to avoid overfitting. Once the model is 
trained, parameters will get optimized for the next training 
and model will be retrained with the best parameters. Finally, 
the evaluation of the model will be held on the testing 
dataset. 

 

Fig-10: Flow of Training, Testing & Evaluation 

4.6 RUL estimation 

Finally, RUL will be estimated like, how much time (in terms 
of the number of cycles) is left before the next fault? 

5. EXPERIMENTAL STUDY, RESULTS & DISCUSSION 
 
All experiments are operated on Google Collaboratory 
platform having GPU. Using Colab individual can import an 
image dataset, train an image classifier upon it, and evaluate 
the model. Colab notebooks execute code on Google's cloud 
servers, that means one can leverage the power of Google 
hardware, including GPUs and TPUs. Also, Keras libraries are 
used having TensorFlow backend. Keras is a powerful open-
source Python library for developing and evaluating deep 
learning models such as CNN and LSTM. It covers the efficient 
numerical computation libraries Theano and TensorFlow 
used for machine learning applications such as neural 
networks. 

5.1 Understanding of the dataset through the plots 

Once the CMAPSS dataset column labelling is done, training, 
testing and ground truth data sets are loaded. Data are 
available in the form of time series. Here in the below plot, 
one can conclude that unit 69 has the maximum number of 
cycles and unit 39 has the minimum number of cycles. 

 

Fig-11: Plotting for the number of cycles of each unit 

Just by plotting, identification of some data attribute 
containing constant data values can be done. Based on the 
identification, all the constant features have been eliminated 
in this step. To plot is always a good idea, in this way, one can 
have an impressive and general overview of the data at our 
disposal. 

https://colab.research.google.com/notebooks/intro.ipynb
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Fig-12: Plotting of Dataset Attributes 

Verified feature selection with Correlation Matrix for all 
engine units. Out of all the columns these 17 columns are 
selected for    further analysis: 'Op_Setting_1', 'Op_Setting_2', 
'Sensor_2', 'Sensor_3', 'Sensor_4', 'Sensor_6', 'Sensor_7', 
'Sensor_8', 'Sensor_9', 'Sensor_11', 'Sensor_12', 'Sensor_13', 
'Sensor_14', 'Sensor_15', 'Sensor_17', 'Sensor_20', 'Sensor_21' 

 

Fig-13: Correlation Matrix for Feature Selection 

5.2 RUL Calculation of each row 

This section calculates RUL in T-Minus notation. As covered 
in the methodology section, by finding the last cycle of each 
unit and then subtracting of a current cycle from it will 
results in RUL for each row. In case of training set, last cycle 
(time of failure) is provided in the data set itself. 

 

Fig-14: Snapshot of the training dataset 

In case of test set the last cycle of each unit (i.e. time to 
failure(ttf)) is not given in the test set. So, to calculate the RUL 
of each raw, values given in the ground truth set will be 
considered as the value of the last cycle (ttf). 

 

Fig-15: Snapshot of the testing dataset 

5.3 Adding labels to the dataset 

The class label has been given based on RUL column 
containing continuous values, as follows.  

 

Fig-16: Snapshot of Dataset after adding label column 

5.4 Data Normalization 

This step of data preparation is made using min-max pooling 
as discussed in the methodology section. Min-max 
normalization has been used to enable the unbiased 
contribution from the output of each sensor, i.e., 

 

where  is the time sequence of ith sensor measurements, 
and  is the normalized sensor data. This normalization will 
guarantee equal contribution from all features across all 
operating conditions [34]. The normalized data will be 
between [-1,1]. 

 

5.5 Time Series to image transformation 

gen_sequence() and gen_labels() functions are used to 
generate sequences from time series and label each window 
of size 50 respectively as shown in the below code snippet. 
For efficiency reason a 2D CNN requires spatial invariance. 
So, to transform the time series windows to 
images Recurrence Plots has been used. They are easy to 
implement in python Scipy with a few lines of code. 
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5.6 Recurrence Plot 

Using that function on time series sequence images are 
generated of size 50x50. One observation is made by an array 
of images of size 50x50x17. Where 17 is the number of non-
zero variance columns. 

 

 

 

Fig -17: Snapshot of some observations 

5.7 Model fitting & evaluation 

5.7.1 CNN 

Model is trained using 9 epochs using early stopping 
callbacks and to avoid overfitting cross-validation is applied. 
Adam optimizer is being used to tune and optimize the 
hyperparameter. Also, cross-validation is used to avoid 
overfitting. Finally using early stopping callbacks model get 
trained at 9th epoch only. Once model gets fitted now it’s 
time to evaluate the model using a test set. While evaluating 
the trained model in case of FD001 dataset 91.74% accuracy 
is achieved. 

5.7.2 LSTM: 

Model is trained using 3 epochs using early stopping 
callbacks and to avoid overfitting cross-validation is applied. 
Once model gets fitted now it’s time to evaluate the model 

using a test set. While evaluating the trained model in case of 
FD001 dataset 79.91% accuracy is achieved. 

5.8 Results 

In this sub-section, various experimental results have been 
presented to evaluate the performance of the CNN model for 
RUL estimation. Also, following the same steps, the model for 
FD002, FD003 & FD004 datasets has been trained and for 
every dataset, accuracy have been compared with LSTM 
model’s resultant accuracy in the next subsection (5.9).  

Table-1: Accuracy & Loss with CNN Model 
 

Dataset Name Accuracy Loss 

FD001 91.74% 23.28% 

FD002 87.74% 36.33% 

FD003 94.16% 19.24% 

FD004 93.64% 39.50% 

 

5.9 Comparison between CNN & LSTM  

Table-2: Accuracy Comparison between CNN & LSTM 
 

Accuracy comparisons Table 

Approaches 

used 
FD001 FD002 FD003 FD004 

CNN 91.74% 87.74% 94.16% 93.64% 

LSTM 79.91% 80.50% 90.24% 74.18% 

 

Implementing both models on the same preprocessed time-

series data, it is found that CNN model is giving better 

accuracy than LSTM at the same time research objective has 

been fulfilled of classifying very rare events which are 

challenging to do with LSTM. CNNs are also good for feature 

extraction for the same reason, making them beneficial for 

transfer learning. For the system on which rarer events 

prediction is require in that way the decision has been made 

to go with CNN. 

6. CONCLUSION AND FUTURE WORK 
 

In this study, deep CNN and recurrence plot for the gas 

turbine-based turbofan engine have been explored. 

Segmentation of the time series dataset has been performed 

and generated recurrence plot image to train a deep CNN. 

sequence_length = 50 
 

def gen_sequence(id_df, seq_length, seq_cols): 
 

    data_matrix = id_df[seq_cols].values 
    num_elements = data_matrix.shape[0] 
    for start, stop in zip(range(0, num_elements-

seq_length), range(seq_length, num_elements)): 
        yield data_matrix[start:stop, :] 
         
def gen_labels(id_df, seq_length, label): 
 

    data_matrix = id_df[label].values 
  

   num_elements = data_matrix.shape[0] 
    return data_matrix[seq_length:num_elements, :] 

def rec_plot(s, eps=0.10, steps=10): 

    d = pdist(s[:,None]) 

    d = np.floor(d/eps) 

    d[d>steps] = steps 

    Z = squareform(d) 

    return Z 
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The system achieved accuracy in the range of 91.74% to 

94.16% in benchmark dataset. Observation has been made 

that a deep CNN can learn recurrence plot from historical 

sensor data and can make a remaining useful life estimation. 

Using which one can achieve the following benefits, 

1. Feature extraction is automatic. 

2. In case of any prognostic health management 
dataset, one can train the applied CNN model with 
the use of user-friendly GUI and estimate RUL of the 
targeted assets, due to automatic feature extraction. 
Even though the user does not have much 
knowledge about the dataset and ML. 

3. It will reduce the downtime as well as money loss. At 
the same time, it will increase the efficiency of the 
turbofan engine with the Just in Time maintenance. 

4. Using Convolutional Neural Network one can classify 
the rare events using time-series data. 

Overall, this work has demonstrated the performance of deep 

CNN to learn a recurrence plot pattern and estimate RUL. The 

future work will focus on improving the accuracy of the 

model. Besides, one can explore the performance to real-time 

data. 
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