
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 421

Acceleration of Deep Learning Image Classification Model

Ashwin P R

 Department of Electronics and Communication Engineering, RV College of Engineering, Bangalore, Karnataka,
India

---***---

Abstract - Artificial intelligence and deep learning
algorithms are widely used nowadays in almost every
electronic devices, those algorithms need to be executed as
quickly as possible in some time critical devices like self-
driving cars etc. So for executing those Deep Learning
algorithms, some accelerators are required to accelerate the
time critical tasks. Most of the current technology uses AXI
interface for offloading deep learning algorithms on to
accelerator. In this paper the deep learning models are
accelerated on GPUs. Intel integrated GPU is used for
accelerating the various deep learning models using the Intel
OpenVino software. Image classification models are the
targeted models for acceleration. The benchmarking results of
the selected deep learning models run on CPU (Intel i5 4200
processor) and Intel Integrated GPU present in the laptop are
compared. All the simulations are carried on Windows Laptop
using OpenVino software.

Key Words: Artificial Intelligence, Deep Learning, GPU, CPU,
Intel OpenVino.

1. INTRODUCTION

Nowadays Artificial Intelligence and Deep Learning are
increasingly being used in many devices. These include edge
devices which need to be energy efficient and don’t have a
lot of processing power with them unlike the huge servers
[1]. For such ARM architecture based systems there is need
of offloading common Artificial Intelligence and Deep
Learning tasks to hardware such as FPGA and GPUs to obtain
considerable amount of acceleration on them [2-4]. This
acceleration of these tasks should happen in some critical
systems like self-driving cars where it should rapidly detect
the obstacles in its path and should locate the path where
obstacles are less [6].
The growing complexity of software applications running on
the low power devices like ARM processors call for the
increase in the processing power. Typically, a RISC
processors does not provide enough computational
resources and the use of a specialized hardware or software
accelerator is inevitable [5]. However in this paper, the
benchmarking results like throughput, latency of the
SqueezeNet model run on Intel CPU (Intel i5 4200
processor) and integrated Intel GPU in the laptop are
obtained and compared for acceleration. The brief workflow
of the software being used that is Intel OpenVino used for
acceleration on GPU is discussed in software details section

and then methodology obtained and results obtained are
discussed in further sections. Also in next sub-sections brief
introduction to convolutional neural networks and the
various models used for computer vision tasks specially the
models used for image classification task is given.

1.1 Convolutional Neural Networks and Image
Classification models

The convolutional neural network (CNN) is a subdivision
of deep learning neural networks. CNNs has made a major
breakthrough in image classification and object recognition.
They are most commonly used for analyzing the visual
images and are majorly working towards the scenes in image
classification. They are now found at peak of everything from
Facebook’s friend suggestion, photo tagging to self driving
cars.

 Image classification is the process of taking an input such
as image of cat or dog and outputting a class or a probability
that the input is a particular class. This process of image
classification could be possible with a convolutional neural
network. CNNs have an input layer, output layer, and hidden
layers. The hidden layers consists of convolutional layers,
ReLU layers, pooling layers, and fully connected layers. A CNN
convolves the learned features with the input data and uses
2D convolutional layers. This means that this type of network
is ideal for processing 2D images and also CNNs use very little
preprocessing.

A CNN usually works by extracting the features from
images automatically. By this the manual feature extraction
can be completely eliminated. The features are not trained
but they are learned while the network trains on a set of
images. This makes deep learning models more accurate for
computer vision tasks. CNNs learn feature detection through
tens to hundreds of hidden layers. Each layer in CNN
increments the complexity of the features that are learned
while training. A CNN starts with an input image and then
applies many different filters (convolution operation) to it to
create a feature map and then applies a ReLU function to
increase non-linearity of a feature map, this is because
images are highly nonlinear, ReLU function removes negative
values from an activation map by setting them to zero. And
then applies pooling layer to each created feature maps in the
convolution process and levels the pooled images into one
long vector, and then inputs the vector into a fully connected
artificial neural network and processes the features through
the network. The final fully connected layer provides the
probability of the class that we are looking for. Finally the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 422

model trains through forward propagation and back
propagation for many epochs. This repeats until the well-
defined neural network with trained weights and feature
detectors occur.

Some of the image classification models are LeNet,
AlexNet, GoogleNet, ResNet, SqueezeNet and many more. All
these models are trained on ImageNet dataset. ImageNet is a
large visual database designed mostly for use in visual image
classification and object recognition software research. More
than 14 million images are hand annotated by the project to
show that, what objects are pictured and in approximately
one million of images, the bounding boxes are being
provided. LeNet is the first image classification model
developed, it consists of convolutional encoder consisting of
two convolutional layers and a dense block consisting of
three fully connected layers. AlexNet came after LeNet with
some improvements, it is comprised of five convolutional
layers, then followed by three fully connected layers and has
a top 5 error rate of 10%. Compared to LeNet, it has more
filters per layer and stacked convolutional layers and hence
classification accuracy is increased. GoogleNet model is the
successor of AlexNet model which has some improvements in
its accuracy and it made by a team at Google and it also has a
name Inception V1, which achieved a top 5 error rate lower
than 7%. The architecture of GoogleNet is 22 layers deep and
reduced the number of parameters by using batch
normalization, RMSprop and image distortions compared to
previous models. GoogleNet has only 4 million parameters, a
drastic reduction compared to the 60 million parameters of
AlexNet. Residual Neural Network or ResNet comes after
GoogleNet which achieved a top 5 error rate of 3.57%. ResNet
have up to 152 layers. It uses skip connections to jump
towards certain layers in the process and has heavy batch
normalization. This smart implementation of the architecture
of ResNet makes it possible to have 6 times more layers than
GoogleNet with less complexity and more accuracy.

In this paper benchmarking results are achieved on
SqueezeNet model. In the next sub-section the description of
SqueezeNet model is given.

1.2 SqueezeNet model

SqueezeNet is deep convolutional neural network
computer vision applications. The main aim for designing the
SqueezeNet model was to create a more smaller neural
network compared to other neural networks with same
accuracy, and with much less parameters that can efficiently
fit into the computer memory and can easily be transported
over a computer network. The smaller neural network is
achieved by replacing 3x3 filters with 1x1 filter, which leads
to 9X fewer parameters and then decreasing the number of
input channels to 3x3 filters. With SqueezeNet, there is a 50×
reduction in model size compared to AlexNet, while meeting
or exceeding the top 1 and top 5 accuracy of AlexNet. With
SqueezeNet model it also has a top 5 error rate of less than
7% and has a less parameters, with more accuracy.

In the next section the brief description of software being
used i.e Intel OpenVino is given and how it is used to obtain
benchmarking results of the pre-trained models. And then
the methodology to obtain acceleration results on GPU is
given.

2. SOFTWARE DETAILS

The Intel OpenVino software is used in this paper for
achieving acceleration on Integrated Intel GPU. The
OpenVINO software is a comprehensive toolkit which is used
for developing and deploying the vision oriented solutions on
Intel platforms. The block diagram, shown in the Fig. 1,
depicts the deployment workflow of the software and the
project.

Fig -1: Workflow of OpenVino software

Description of workflow in steps are given below:

1. Configuring the Model Optimizer for the specific
framework. The pre-trained model (.prototxt and
.caffemodel for example) in some framework is
given as input to the model optimizer.

2. By running the Model Optimizer which can produce
an enhanced Intermediate Representation (IR) of
the pre-trained model used based on the
parameters like trained network topology, weights
and biases values, and other important parameters.

3. Testing the selected model in the IR format (.xml
and .bin) using the Inference Engine in the target
environment with provided Inference Engine
sample codes.

4. Integrating the Inference Engine in the application
to deploy the model in the target device or platform.

3. METHODOLOGY OBTAINED

Existing methods of accelerating the deep learning models
and convolutional neural network models were analyzed [7-
9], where a random forest classifier and binarised neural
network were accelerated on FPGA, CPU and GPU and
compared the results obtained. Acceleration of the task is
done in Intel Integrated Graphics GPU present in the laptop
and the performance is compared with the results obtained
when the model is run on the CPU. Algorithm for running the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 423

model on GPU is designed by using the algorithm used for
running the model on the CPU. First step is to download the
required model i.e SqueezeNet model using the model
downloader present in toolkit by running the downloader.py
python file. Next step is to convert the model to the Inference
Engine (IR) format. Go to the Model Optimizer directory and
run the mo.py script with specifying the path to the model,
model format and output directory to generate the IR files.
The IR files are generated in mentioned folder after running
the model optimizer file. This IR file and test dataset are used
as input for the inference engine code. The benchmarking
application code takes input as the required model and test
dataset and provides benchmarking results of the model. Also
the classification of image inference engine code is run which
takes test dataset and the model in the form of IR as input.

The Intel Integrated Graphics is the GPU embedded on same
die as the processor and shares available system memory,
which can perform more tasks than CPU present. The results
obtained by performing according to mentioned methodology
is given in the next section.

4. RESULTS AND DISCUSSION

The selected model for the acceleration is image
classification model such as SqueezeNet model as discussed
in previous sections. Classification of images inference engine
code is executed with the above model. For that code, the
inputs are SqueezeNet model in Intermediate Representation
format and one test image. In this experiment the image of
car is given as test input.

The results obtained are of top ten probabilities of classes of
the dataset with labels. The below screenshot in Fig.2, shows
the classification results for the SqueezeNet model.

Fig -2: Image Classification result of SqueezeNet model

By looking at the results obtained, we can observe that the

predicted probability of the car label is more compared to
any other probabilities. And the SqueezeNet model has
predicted the test image of car properly.

The results obtained in Fig. 2 is the predicted classification
result of the test data. The performance of the model is
obtained by running the benchmarking inference engine code
by mentioning the CPU as the target device, with the model
and test image as input. Below screenshot in Fig. 3 gives the
performance benchmarking results of SqueezeNet model
which is run on CPU of the laptop.

Fig -3: Performance Benchmark result of SqueezeNet model
ran on CPU

The acceleration of the model is achieved by modifying the
code used to run on CPU in order to run it on GPU. By running
the model on GPU (Intel integrated graphics) present in
laptop, throughput is improved and latency is decreased that
means acceleration is achieved. Below figure (Fig. 4) shows
performance benchmarking results of SqueezeNet models
which is run on GPU.

Fig -4: Performance Benchmark result of SqueezeNet model
ran on GPU

The above result shows that throughput is increased
drastically by running the model on GPU compared to
running it on CPU. And also a latency is decreased
appreciably. That means delay of execution is reduced in
GPU and acceleration is achieved.

5. CONCLUSIONS

First in the starting section brief description of convolutional
neural networks, its main layers and how CNN is used in
image classification models. Also some of the image

classification models such as LeNet, AlexNet, GoogleNet,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 424

ResNet and SqueezeNet are discussed and their
performances are compared. And then the brief workflow of
the software being used that is Intel OpenVino used for
acceleration is discussed. Using this software, the
acceleration of SqueezeNet model is achieved on GPU (Intel
integrated graphics). The throughput of SqueezeNet model
run on CPU (Intel i5 4200 processor) obtained is 124.89 FPS
and latency is 31.62 ms. And the throughput of accelerated
SqueezeNet model achieved is 391.06 FPS and the latency is
5.03 ms. Throughput and latency is improved, that is the
acceleration of model is achieved.

REFERENCES

[1] A. Ignatov, R. Timofte, A. Kulik, S. Yang, K. Wang, F.

Baum, M. Wu, L. Xu, and L. V. Gool, “AI benchmark: All
about deep learning on smartphones in 2019,"
IEEE/CVF International Conference on Computer Vision
Workshop (IC-CVW), IEEE, Oct. 2019. doi:
10.1109/iccvw.2019.00447.

[2] E. Nurvitadhi, S. Subhaschandra, G. Boudoukh, G.
Venkatesh, J. Sim, D. Marr, R. Huang, J. O. G. Hock, Y. T.
Liew, K. Srivatsan, and D. Moss, “Can FPGAs beat GPUs in
accelerating next-generation deep neural networks?"
Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays - FPGA
'17, ACM Press, 2017. doi: 10.1145/3020078.3021740.

[3] S. Zheng, A. Vishnu, and C. Ding, “Accelerating deep
learning with shrinkage and recall," IEEE 22nd
International Conference on Parallel and Distributed
Systems (ICPADS), IEEE, Dec. 2016. doi:
10.1109/icpads.2016.0129.

[4] V. T. Vu, G. Cats, and L. Wolters, “GPU acceleration of the
dynamics routine in the HIRLAM weather forecast
model," International Conference on High Performance
Computing & Simulation, IEEE, Jun. 2010. doi:
10.1109/hpcs. 2010.5547152.

[5] T. Patyk, P. Salmela, T. Pitkaanen, P. Jaaskelainen, and J.
Takala, “Design methodology for offloading software
executions to FPGA," Journal of Signal Processing
Systems, vol. 65, no. 2, pp. 245, Jul. 2011. doi:
10.1007/s11265-011-0606-x.

[6] S. Liu et al, “Creating Autonomous Vehicle Systems,
Morgan Claypool Publishers”, 2017.

[7] B. V. Essen, C. Macaraeg, M. Gokhale, and R. Prenger,
“Accelerating a random forest classifer: Multi-core, GP-
GPU, or FPGA?," IEEE 20th International Symposium on
Field-Programmable Custom Computing Machines, IEEE,
Apr. 2012. doi: 10.1109/fccm.2012.47.

[8] E. Nurvitadhi, D. Sheeld, J. Sim, A. Mishra, G. Venkatesh,
and D. Marr, “Accelerating binarized neural networks:
Comparison of FPGA, CPU, GPU, and ASIC," International
Conference on Field-Programmable Technology (FPT),
IEEE, Dec. 2016. doi: 10.1109/fpt.2016.7929192.

[9] K. Nagarajan, B. Holland, A. D. George, K. C. Slatton, and
H. Lam, “Accelerating machine-learning algorithms on
FPGAs using pattern-based decomposition," Journal of
Signal Processing Systems, vol. 62, no. 1, pp. 43, Jan.
2009. doi: 10.1007/s11265-008-0337-9.

