
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3935

BUILDING AN EVENT-DRIVEN MESSAGING BROKER

Gowthami T P1, Dr. Deepamala N2

1Department of Computer Science and Engineering, R V College of Engineering, Bengaluru, Karnataka, India
2Assistant Professor, Department of Computer Science and Engineering, R V College of Engineering, Bengaluru,

Karnataka, India
---***---
Abstract – In traditional message processing, a component
creates a message then sends it to specific destination. The
receiver, which has been sitting idle and waiting, receives the
message and acts accordingly. When the message arrives, the
receiver performs a single process, and then deletes the
message. But message broker use a store and forward system
where events travel from broker to another broker until they
reach the specific consumer. Message broker eliminate the
inefficiencies linked with the traditional polling based
communication mechanism and make the process of data
exchange simple and reliable. The event-driven architecture
consists of two main topologies, the mediator and the broker.
In this paper the difference between those two topologies,
their drawbacks and advantages are enhanced.

1. INTRODUCTION

Nowadays, about 12 billion smart machines are connected to
the Internet. Considering about 7 billion people on the
planet, we have almost one-and-a-half device per person.
With technological development, our everyday life becomes
more and more digitized. As a result of this digitization,
software developers face the problem of successful data
exchange. To overcome that, we have special message
brokers. They make the process of data exchange simple. We
use message broker in event-driven applications because.

1. To control the data feeds to the system For example,
the number of registrations in any system.

2. To put data to several applications and avoid direct
usage of their API.

3. To implement time-bound request/reply interface

In event-driven architecture, when a service performs some
piece of work that other services might be interested in, that
service produces an event-a record of the performed action.
Other services consume those events so that they can
perform any of their own tasks needed as a result of the
event. Unlike with REST, services that create requests do not
need to know the details of the services consuming the
requests.

Events can be published in a variety of ways. For example,
they can be published to a queue that guarantees delivery of
the event to the appropriate consumers, or they can be
published to a pub/sub model stream that publishes the
event and allows access to all interested parties.

Uses of event-driven architecture is,

 Asynchronous – event-based architectures are
asynchronous without blocking.

 Loose Coupling – services don’t need knowledge of,
or dependencies on other services.

 Easy Scaling – Since the services are decoupled
under an event-driven architecture, and as services
typically perform only one task, tracking down
bottlenecks to a specific service, and scaling that
service becomes easy.

 Recovery support – An event-driven architecture
with a queue can recover lost work by “replaying”
events from the past.

2. Types of Message Broker

2.1.1 Message Broker RabbitMQ:

RabbitMQ is known as a traditional message broker written
in the Erlang, which is suitable for a wide range of projects. It
is successfully used both for development of new startups
and notable enterprises. RabbitMQ perfectly works with
Java, Spring, .NET, PHP, Python, Ruby, JavaScript, Go, Elixir,
Objective-C, Swift and many other technologies. The
numerous plugins and libraries are the main advantage of
the software.

Advantages :

 Suitable for many programming languages and
messaging protocols.

 Modern in-built user interface.
 Can be used on different operating systems and

cloud environments.
 Scales to around 500,000+ messages per second.
 Gives an opportunity to use various developer tools.

Disadvantages :

 Needs Erlang
 Minimal configuration that can be done through

code
 Issues with processing big amounts of data

https://en.wikipedia.org/wiki/Erlang_(programming_language)?ref=hackernoon.com

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3936

2.1.2 Message Broker Apache Kafka :

Kafka is a powerful event streaming platform capable of
handling trillions of messages a day. Kafka is useful both for
storing and processing historical data from the past and for
real-time work. With the help of Apache Kafka, you can
successfully create event-driven applications and manage
complicated back-end systems.

The Apache Kafka has become popular largely due to its
compatibility. We can use Apache Kafka with a wide range of
systems. They are:

 web and desktop custom applications
 microservices, monitoring and analytical systems
 any needed sinks or sources

Advantages :

 Fault-tolerance and reliable solution.
 Suitable for real-time processing.
 Powerful event streaming platform.
 Good scalability and Multi-tenancy.

Disadvantages:

 Lack of ready to use elements.
 The absence of complete monitoring set.
 Dependency on Apache Zookeeper.

3. Methodology

The event-driven architecture pattern consists of two main
topologies, the mediator and the broker. The mediator
topology is commonly used when you need to orchestrate
multiple steps within an event through a central mediator,
whereas the broker topology is used when you want to chain
events together without the use of a central mediator,
Because the architecture characteristics and implementation
strategies differ between these two topologies.

1. Mediator topology :

The mediator topology is useful for events that have multiple
steps and require some level of orchestration to process the
event. There are three main types of architecture
components within the mediator topology:

I. Event queues - The event flow starts with a client
sending an event to an event queue, which is used to
transport the event to the event mediator.

II. Event mediator - The event-mediator component is
responsible for orchestrating the steps contained
within the initial event. For each step in the initial
event, the event mediator sends out a specific
processing event to an event channel, which is then
received and processed by the event processor. It is
important to note that the event mediator doesn’t
actually perform the business logic necessary to
process the initial event; rather, it knows of the
steps required to process the initial event.

III. Event processors - The event processor
components contain the application business logic
necessary to process the processing event. Event
processors are self-contained, independent, highly
decoupled architecture components that perform a
specific task in the application or system.

2. Broker Topology

The broker topology differs from the mediator topology in
that there is no central event mediator; rather, the message
flow is distributed across the event processor components in
a chain-like fashion through a lightweight message broker.
This topology is useful when you do not want central event
orchestration.

There are two main types of architecture components within
the broker topology: a broker component and an event
processor component. The broker component can be
centralized or federated and contains all of the event
channels that are used within the event flow. The event
channels contained within the broker component can be
message queues, message topics, or a combination of both.
This is shown in the figure-1.

Fig 1 : Event-driven broker topology

As we can see from the diagram, there is no central event-
mediator component controlling and orchestrating the initial
event; rather, each event-processor component is responsible
for processing an event and publishing a new event indicating
the action it just performed.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3937

For example, an event processor that balances a portfolio of
stocks may receive an initial event called stock split. Based on
that initial event, the event processor may do some portfolio
rebalancing, and then publish a new event to the broker
called rebalance portfolio, which would then be picked up by
a different event processor. Note that there may be times
when an event is published by an event processor but not
picked up by any another event processor. This is common
when you are evolving an application or providing for future
functionality and extensions.

4. Consideration and Analysis

One consideration to take into account when choosing the
architecture pattern is the lack of atomic transactions for a
single business process. Because event processor
components are highly decoupled and distributed, it is very
difficult to maintain a transactional unit of work across them.
For this reason, when designing our application using the
pattern, we must continuously think about which events can
and can’t run independently and plan the granularity of our
event processors accordingly.

Perhaps one of the most difficult aspects of the event-driven
architecture pattern is the creation, maintenance, and
governance of the event-processor component contracts.
Analysis of the common architecture characteristics for the
event-driven architecture patterns are

1. Overall agility - Ability to respond quickly to a constantly
changing environment.

2. Performance - The pattern should achieves high
performance through its asynchronous capabilities; in other
words, the ability to perform decoupled, parallel
asynchronous operations outweighs the cost of queuing and
dequeuing messages.

3. Scalability - Each event processor can be scaled
separately, allowing for fine-grained scalability.

4. Ease of development - Need for more advanced error
handling conditions within the code for unresponsive event
processors and failed brokers.

While implementing the pattern, we must address various
distributed architecture issues, such as remote process
availability, lack of responsiveness, and broker reconnection
logic in the event of a broker or mediator failure.

It is vitally important when using this pattern to settle on a
standard data format (e.g., XML, JSON, Java Object, etc.) and
establish a contract versioning policy right from the start.

5. CONCLUSIONS

In this paper we studied about different brokers and
topologies used to implement the event-driven messaging
broker. There are two messaging pattern

 Queuing

 pub/sub.

Both of them have some pros and cons. The advantage of the
first pattern is the opportunity to easily scale the processing.
On the other hand, queues aren’t multi-subscriber. The
second model provides the possibility to broadcast data to
multiple consumer groups.

Being a broker-centric program, RabbitMQ gives guarantees
between producers and consumers. If we choose this
software, we should use transient messages, rather than
durable. But Apache Kafka combines those two patterns,
getting benefits of both of them. Implementing the message
broker with the pub/sub in queuing Kafka is the more
efficient broker for the event-driven large projects.

6. REFERENCES

[1] F. Yang, X. Ye, and Y. Zhang, ‘‘DZMQ: A decentralized

distributed messaging system for realtime Web
applications and services,’’ in Proc. 11th IEEE Web Inf.
Syst. Appl. Conf. (WISA), Sep. 2014, pp. 165–171.

[2] Z. Wang, W. Dai, and F. Wang, ‘‘Kafka and its using in
high-throughput and reliable message distribution,’’ in
Proc. 8th Int. Conf. Intell. Netw. Intell. Syst. (ICINIS),
2015, pp. 117–120.

[3] S. Vinoski, ‘‘Advanced message queuing protocol,’’ IEEE
Internet Comput., vol. 10, no. 6, pp. 87–88, Jun. 2006.

[4] M. Rostanski, K. Grochla, and A. Seman, ‘‘Evaluation of
highly available and fault tolerant middleware clustered
architectures using RabbitMQ,’’ in Proc. Federated Conf.
IEEE Comput. Sci. Inf. Syst. (FedCSIS), Sep. 2014, pp.
879–884.

[5] J. Kreps, N. Narkhede, and J. J. Rao, ‘‘Kafka: A distributed
messaging system for log processing,’’ in Proc. NetDB,
2011, pp. 1–7.

[6] J. Gascon-Samson, F. Garcia, B. Kemme, and J. Kienzle,
‘‘Dynamoth: A scalable pub/sub middleware for latency-
constrained applications in the cloud,’’ in Proc. 35th
IEEE Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2015,
pp. 486–496.

