
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 06 | June 2020                  www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 3464 

Security Audit of Kubernetes based Container Deployments: A 

Comprehensive Review  

Mayank Agrawal1, Kumar Abhijeet2, Smitha G.R.3, Chethana R Murthy4 

1Dept. of Information Science and Engineering, RV College of Engineering, Bangalore 
2Dept. of Information Science and Engineering, RV College of Engineering, Bangalore 

3-4Professor, Dept. of  Information Science and Engineering, RV College of  Engineering, Bangalore, India  
---------------------------------------------------------------------***---------------------------------------------------------------------

Abstract - In the age of open-source software, new and 
improved frameworks that are crowd worked to perfection 
are often set as an industry standard. Kubernetes, also an 
open-source software that took the DevOps community by 
surprise and became the new standard for deployments, is a 
product of this standard.  In this paper, we have identified 
the various security vulnerabilities related to a Kubernetes 
based container deployments and laid out the best practices 
to inculcate while setting up the infrastructure for 
deployment using a set of guidelines to enable enterprises 
running cloud-based systems without worrying about the 
attacks for ransomware, crypto mining, data stealing and 
service disruption.   

 
Key Words:  Cloud, Kubernetes, DevOps, Container, 
Docker, Deployment, Infrastructure 
 

1. INTRODUCTION  
 
In recent times, infrastructure development philosophy 
has moved to a DevOps based one, which combines both 
the realms for Development and Operations [1], hence 
using the nuances of programming and tricks of operation 
to create the infrastructure for an organization. After the 
advent of Kubernetes in the past decades, teams have 
rapidly moved from manual cluster deployments and 
maintenance to Kubernetes based orchestration. 
 
Kubernetes is an open-source, portable, orchestration tool 
built upon the learnings of Google for managing 
microservices or containerized applications through a 
distributed cluster of nodes which facilitates both 
declarative configuration and automation. Kubernetes 
provides a highly resilient infrastructure with zero 
downtime deployment capabilities, automatic rollback, 
scaling, and self-healing of containers (which consists of 
auto-placement, auto-restart, auto-replication [2], and 
scaling of containers based on CPU usage). The main 
objective of Kubernetes is to hide the complexity of 
managing a fleet of containers by providing APIs for the 
required functionalities [3]. Kubernetes is portable in 
nature, meaning it can run on various public or private 
cloud platforms such as AWS, Azure, OpenStack, or Apache 
Mesos. It can also run on bare metal machines. 
 

Discussing more about the components and architecture 
of a Kubernetes based system will bring more clarity on 
further discussions on its security. Kubernetes follows a 
client-server architecture. It’s possible to have a multi-
master setup (for high availability), but by default, there is 
a single master server which acts as a controlling node and 
immediate point of contact. The master server consists of 
various components including a Kube-apiserver, an etcd 
storage, a Kube-controller-manager, a cloud-controller-
manager, a Kube-scheduler, and a DNS server for 
Kubernetes services. Node components include kubelet 
and Kub-proxy on top of Docker (a platform as a service to 
deliver software in packages called containers).  
 

 
  

Fig. 1 High-Level Kubernetes Architecture Diagram 
 
Making use of Kubernetes requires understanding the 
different abstractions it uses to represent the state of the 
system [4], such as services, pods, volumes, namespaces, 
and deployments. 
 
 Pod – generally refers to one or more containers that 
should be controlled as a single application. A pod 
encapsulates device modules, computing space, an 
eccentric network ID, and other module settings on how to 
run the containers. 
 
Service - pods are volatile, that is Kubernetes does not 
guarantee that a given physical pod will be kept alive (for 
instance, the replication controller might kill and start a 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 06 | June 2020                  www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 3465 

new set of pods). Instead, a service represents a logical set 
of pods and acts as a gateway, allowing (client) pods to 
send requests to the service without needing to keep track 
of which physical pods actually make up the service. 
 
Volume - Like a container volume in Docker, but a 
Kubernetes volume applies to a whole pod and is mounted 
on all containers in the pod. It is like a directory accessible 
to all the containers running in a pod. Kubernetes 
guarantees data to be preserved in volumes across 
container restarts. The volume will be removed only when 
the pod gets destroyed. Also, a pod can have multiple 
volumes (possibly of different types) associated. 
 
Namespace - a virtual cluster (a single physical cluster 
may operate several virtual clusters) built for 
environments with a wide number of users distributed 
through several teams or ventures, to address problems. 
Objects inside a namespace must be different, so they 
cannot access objects in another namespace. A resource 
limit can often be assigned to a namespace to prevent 
using more than its share of the physical cluster. 
 
Deployment - describes the desired state of a pod or a 
replica set, in a .yaml file. The Deployment Controller then 
changes the environment slowly (for example, adding or 
removing replicas) until the current state matches the 
desired state defined in the Deployment script. For 
example, if the .yaml file defines 2 replicas for a pod but 
only one is currently running, then an additional replica 
will automatically get created. 
 
In the context of the Kubernetes concepts, container 
deployment is a method for quickly building and releasing 
complex applications. Kubernetes container deployment is 
a popular technology that gives developers the ability to 
construct application environments with speed at scale. 
Docker and Openshift are also widely accepted container 
deployment technologies. 
  

 
Fig. 2, Container Deployments 

 
 

 

2. SECURITY CHALLENGES 

Containers and frameworks such as Kubernetes enable 
businesses to automate many facets of application 
deployment, bringing enormous business benefits. But 
such latest architectures are as susceptible as 
conventional systems to attacks and hacks by hackers and 
outsiders, rendering Kubernetes protection a vital 
component for all architectures. Attacks on malware, 
crypto mining, code theft, and device interruption will 
start toward modern virtualized container-based systems 
in both private and public clouds [5].  

To make matters worse, emerging techniques and 
innovations such as Docker and Kubernetes would be 
under assault to find alternatives to control the critical 
properties of an organization. The latest exploit in 
Kubernetes at Tesla is only the first of several container-
based vulnerabilities that we will expect in the coming 
months and years. 

The dynamic nature of containers creates the following 
Kubernetes security challenges: 

● Explosion of East-West Traffic - Containers 
might be seamlessly deployed through hosts or 
perhaps even clouds, increasing the east-west or 
internal traffic that needs to be monitored for 
attacks significantly. 

● Increased Attack Surface - Every container can 
have a specific surface area of attack and 
weaknesses that can be exploited. Additionally, 
attention should be extended to the additional 
attack surface introduced by container 
orchestration platforms such as Kubernetes and 
Docker.  

● Automating Security to Keep Pace - Old 
protection models and software won't be able to 
keep up in an ever-changing container 
environment. 

There are some vulnerabilities and attack vectors on 
Kubernetes which should be explored before moving on to 
remedial strategies and best practices [6]. Attacks on 
Kubernetes containers operating in pods may come from 
outsiders externally or internally across the network, 
including victims of phishing attacks whose networks are 
conduits for insider attacks. Here are a few examples: 

● Container compromise - A misconfiguration or 
malfunction in a program helps the intruder to get 
into a container and start searching for network 
vulnerabilities, process controls, or file system. 

● Unauthorized connections between pods - 
Compromised containers may attempt to link 
with the same hosts or with other operating pods 
to probe or launch an attack. Whilst the Layer 3 
network controls whitelisting pod IP addresses 
may provide certain security, attacks on 
trustworthy IP addresses can only be identified 
through filtering of the Layer 7 network. 

 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 06 | June 2020                  www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 3466 

● Data exfiltration from a pod - Data theft is 
sometimes achieved using a variety of strategies 
that could involve a reverse shell in a pod 
connecting to a command/control system and 
network rerouting to hide sensitive data. 

In addition to these vulnerabilities, attackers can also 
launch a series of malicious activities that can be 
considered as a “Kill Chain”. These are the most damaging 
activities which together achieve the goal of attackers. 
These attacks can occur within a span of seconds or 
spread over days or even last for months. 

Detecting events in a kill chain requires rigorous 
monitoring. Since the attack compromises multiple 
resources instances in the system, multiple layers of 
security monitoring are required. Some of the most critical 
vectors which have a high rate of chance of detection 
includes: 

● Network detection. The network provides the 
starting gateway to attack. A malicious user 
typically enters via a network connection and 
uses subsequent opportunities to detect lateral 
movement. 

● Container monitoring. An exploit within a 
system can be determined by detecting any 
unregulated system call, file system activity.  A 
typical container can be monitored to determine 
to find any suspicious process or attempts being 
made to break out of the container. Before you 
begin to format your paper, first write and save 
the content as a separate text file. Keep your text 
and graphic files separate until after the text has 
been formatted and styled. Do not use hard tabs, 
and limit use of hard returns to only one return at 
the end of a paragraph. Do not add any kind of 
pagination anywhere in the paper. Do not number 
text heads-the template will do that for you. 

Finally, complete content and organizational editing 
before formatting. Please take note of the following items 
when proofreading spelling and grammar: 

3. KUBERNETES DEPLOYMENT BEST PRACTICES 
 
The best practices and guidelines are laid out as follows 

which should be followed in order to prevent the 
Kubernetes infrastructure from the above attacks and 
vulnerabilities [8]. 
 
3.1 Preparing Kubernetes Worker Nodes for 
Production 
 

The host networks for the Kubernetes worker nodes 
should be locked off before deploying any framework 
containers. The following are the methods to lock down 
the worker nodes. 

 
● Use namespaces - Namespaces divide the 

Kubernetes infrastructure to different zones with 
non-stretchable boundaries. 

● Restrict Linux capabilities - Linux offers a lot of 
services to change and modify network 
management, which can be used for attacks. 

 
● Enable SELinux - Use this Linux distro to get 

better control over network systems. 
 
● Use a minimal Host OS - It is advised to use an 

OS for the host system which satisfies only the 
required needs. 

 
● Update system patches - Keep the system up-to-

date is extremely crucial when it comes to 
infrastructure management as developers issue 
new patches every release cycle which solves a 
certain security vulnerability. 

 
● Run CIS Benchmark security tests - The CIS 

benchmark tests ensure that the system is 
optimized to support the Kubernetes containers 
and deployments. 

 
3.2 Real-time Kubernetes Security 
 

When containers are in production, the three main 
security vectors for their protection are network filtering, 
container inspection, and host security. 

 
3.2.1 Inspect and Secure the Network 
 

A container firewall is a modern form of security service 
that extends conventional network protection strategies to 
the current Kubernetes cloud-native framework. There are 
numerous ways to protect a container network with a 
firewall including: 

 
● Layer 3/4 filtering based on IP addresses and 

ports. This solution involves Kubernetes' network 
policy for continuous upgrading of regulations, 
securing applications when they shift and expand. 
Simple network optimization laws are not 
intended to include the rigorous control, 
reporting, and threat identification required for 
business-sensitive container deployments but can 
provide some security against unwanted 
connections. 

 
● Web application firewall (WAF) attack protection 

may secure containers facing the web (typically 
HTTP-based applications) using methods that 
identify specific threats, comparable to web 
application firewalls features. However, the 
protection is restricted to external HTTP attacks 
and lacks the multi-protocol filtering that is often 
required for internal traffic. 

 
● Layer-7 container firewall A container firewall 

with Layer 7 filtering and deep inter-pod traffic 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 06 | June 2020                  www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 3467 

monitoring of packets secures containers using 
network device protocols. Security is focused on 
the whitelists of client protocols as well as 
automated identification of common network-
related device attacks such as DDoS, DNS, and SQL 
injection. Container firewalls are often in a unique 
role to integrate container process control and 
host protection in the surveyed threat vectors. 

 
Owing to the complex design of the containers and the 

Kubernetes networking paradigm, standard methods 
cannot be used for network detection, forensics, and 
review. Easy activities like packet capture to monitor 
programs or to examine security incidents are no longer 
basic. New Kubernetes and container-conscious resources 
are required to perform protection, inspection, and 
forensic tasks on the network. 

 
3.2.2 Container Inspection 
 

Attacks also allow the use of power escalations and 
manipulative mechanisms to carry out or distribute an 
attack over the number of containers. Exploits of Linux 
kernel vulnerabilities (such as Dirty Cow), modules, 
libraries, or programs themselves may contribute to 
suspicious behaviour inside a container. 

 
A crucial aspect of container protection is monitoring 

container processes and file system operation and 
identifying unusual behaviour. It will all identify irregular 
activities such as port scanning and reverse shells, or 
privilege escalations. A mixture of built-in identification 
and a simple behavioural learning method will be 
accessible that can classify suspicious behaviours focused 
on prevention. 

 
If containerized systems are developed with 

microservice concepts in mind, because each program in a 
container has a small range of features, and the container 
is constructed with just the necessary packages and 
libraries, it is much simpler and more reliable to identify 
irregular processes and file system operation.  
 
3.2.3 Host Security 
 

If the host (e.g. Kubernetes worker node) on which 
containers run is running is compromised can lead to 
numerous security challenges. These include: 

 
● Privilege escalations to root - The root access to 

the system may provide the attacker to modify the 
system in any way desired, it may also revoke 
permissions to the system thus preventing the 
user from any access to the system.   

 
● Changing of cluster-admin privileges - The 

Cluster admin configuration to authentication 

modules may be changed to provide unrestricted 
permissions to unauthorized users.  

 
● Host resource damage or hijacking (e.g. crypto 

mining software). The attacker may launch 
bidirectional mount propagation in unprivileged 
containers to damage the host resources. 

 
● Stopping API Server or the Docker daemon. 

These are the critical orchestration tools that are 
essential to ensure scalability and reliability 
within the containers.  

 

3.3 Securing the Kubernetes System and 
Resources 
 

Orchestration software like Kubernetes and their 
management platforms developed on top of it may be 
susceptible if not secured against attacks. This reveals 
possibly new attack surfaces for previously non-existent 
container implementations, which would thus be intended 
to be abused by hackers [9]. 

 
It's important to correctly configure the RBACs (Role-

based access control) for device resources to secure 
Kubernetes and management systems themselves from 
attacks. Below are the areas for reviewing and configuring 
proper controls on access. 

 
● Protect the API Server - To avoid unauthorized 

entry, customize RBAC for the API Server, or 
manually build firewall rules. 

 
● Restrict Kubelet Permission - Set up RBAC for 

Kubelets and handle rotation of certificates to 
protect the Kubelet.  

 
● Authentication for all the external ports. Check 

all publicly available ports and uninstall unused 
ports. 

 
● Mandatory authentication of external ports. 

For non-authenticated services, restrict access to 
a whitelisted source. 

 
● Limit Console Access - If correctly designed for 

user login with strong passwords or two-factor 
authentication, do not require console / proxy 
access. 

 

4. CONCLUSION 
 
 The Kubernetes deployment network can be secure from 
attacks when paired with reliable host protection as 
mentioned before for locking down the worker nodes. 
However, surveillance software can also be used to control 
links to monitor networks and prevent unwanted attempts 
at connections and possible attacks. Real-time, policy-



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 06 | June 2020                  www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 3468 

based server, servers, network, and device resources 
tracking can identify all irregular activities and unwanted 
external connections. 
 

REFERENCES 
 
[1] L. Abdollahi Vayghan, M. A. Saied, M. Toeroe and F. 

Khendek, "Deploying Microservice Based Applications 
with Kubernetes: Experiments and Lessons Learned," 
2018 IEEE 11th International Conference on Cloud 
Computing (CLOUD), San Francisco, CA, 2018, pp. 970-
973. 

[2] L. P. Dewi, A. Noertjahyana, H. N. Palit and K. Yedutun, 
"Server Scalability Using Kubernetes," 2019 4th 
Technology Innovation Management and Engineering 
Science International Conference (TIMES-iCON), 
Bangkok, Thailand, 2019, pp. 1-4. 

[3] C. Chang, S. Yang, E. Yeh, P. Lin and J. Jeng, "A 
Kubernetes-Based Monitoring Platform for Dynamic 
Cloud Resource Provisioning," GLOBECOM 2017 - 
2017 IEEE Global Communications Conference, 
Singapore, 2017, pp. 1-6. 

[4] D. Elliott, C. Otero, M. Ridley and X. Merino, "A Cloud-
Agnostic Container Orchestrator for Improving 
Interoperability," 2018 IEEE 11th International 
Conference on Cloud Computing (CLOUD), San 
Francisco, CA, 2018, pp. 958-961. 

[5] A. Modak, S. D. Chaudhary, P. S. Paygude and S. R. 
Ldate, "Techniques to Secure Data on Cloud: Docker 
Swarm or Kubernetes," 2018 Second International 
Conference on Inventive Communication and 
Computational Technologies (ICICCT), Coimbatore, 
2018, pp. 7-12. 

[6] D. Bernstein, "Containers and Cloud: From LXC to 
Docker to Kubernetes," in IEEE Cloud Computing, vol. 
1, no. 3, pp. 81-84, Sept. 2014. 

[7] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza and J. 
Yusupov, "Towards a fully automated and optimized 
network security functions orchestration," 2019 4th 
International Conference on Computing, 
Communications and Security (ICCCS), Rome, Italy, 
2019, pp. 1-7. 

 
 

 


