International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 07 Issue: 06 | June 2020 www.irjet.net

Contour Map Study of Stresses in a Transversely Isotropic Elastic Plate due to Strip-Loading

Dr. Shamta Chugh
${ }^{1}$ World College of Technology and Management, Gurgaon-122001, Haryana, India

Abstract

The stresses at any point of transversely isotropic elastic plate due to strip-loading have been obtained. Antiplane strain problem with perfectly bonding boundary conditions is considered. Here, Fourier Transformation on equilibrium equations has been used to obtain the solution of the problem. As particular cases: the stresses in an isotropic elastic layered half-space and due to shear line-load in transversely isotropic elastic half space have been obtained. Also, the deformation of a transversely isotropic elastic halfspace due to strip-loading can be obtained from our results. In order to study the effect of strip-loading in the elastic plate, contour maps have been presented.

Key Words: Transversely isotropic material, Striploading, Shear line-load, Fourier transform, Perfectly bonded.

1. INTRODUCTION

The solution of the problem of the deformation of a horizontally layered elastic material under the action of the surface loads has been finding wide applications in engineering, geophysics and soil mechanics. When the source surface is very long in one direction in comparison with the others, the use of two-dimensional approximation is justified and consequently calculations are simplified to a great extent and one gets a closed form analytical solution. A very long strip-source and a very long line-source are examples of such two-dimensional sources. Love [1] obtained expressions for the displacements due to a line source in an isotropic elastic medium. Maruyama [2] obtained the displacement and stress fields corresponding to long strike-slip faults in a homogenous isotropic half-space. Okada [3, 4] provided compact analytic expressions for the surface deformation and internal deformation due to inclined shear and tensile faults in homogenous isotropic half-space.

Garg et al. [5] obtained an analytical solution for the deformation of an orthotropic layered half-space caused by along strike-slip fault. Ting [6] derived the Green's functions for a line force and a screw dislocation for the anti-plane deformation of a monoclinic elastic medium consisting of a single half-space or two half-spaces in 'perfect' contact. Singh et al. [7] have studied the problem of two-dimensional static deformation of a monoclinic elastic medium using the eigenvalue method, following a Fourier transform. Madan et al. [8] have obtained the stresses in an Anisotropic Elastic

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
$\left[\begin{array}{l}\tau_{1} \\ \tau_{2} \\ \tau_{3} \\ \tau_{4} \\ \tau_{5} \\ \tau_{6}\end{array}\right]=\left[\begin{array}{cccccc}c_{11} & c_{12} & c_{12} & 0 & 0 & 0 \\ c_{12} & c_{22} & c_{23} & 0 & 0 & 0 \\ c_{12} & c_{23} & c_{22} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2}\left(c_{22}-c_{23}\right) & 0 & 0 \\ 0 & 0 & 0 & 0 & c_{66} & 0 \\ 0 & 0 & 0 & 0 & 0 & c_{66}\end{array}\right]\left[\begin{array}{l}e_{1} \\ e_{2} \\ e_{3} \\ e_{4} \\ e_{5} \\ e_{6}\end{array}\right]$.
In equation (1), we used Voigt's convention by which the tensional indices are replaced by matrix indices in the expression of the stress and shear components τ_{i} and $e_{i}(i=1,2,3,4,5,6)$. The elements $c_{i j}, i, j=1,2,3,4,5,6$ of the stiffness matrix from (1) represent the elasticity's of the transversely isotropic material. A transversely isotropic material has 5 independent elastic constants and 12 nonzero terms.
The field's equations of a transversely isotropic material in anti-plane strain equilibrium state are:
-displacement equations:
$u_{1}=u_{1}\left(x_{2}, x_{3}\right), u_{2}=u_{3}=0 ;$
-strain equations:
$e_{11}=e_{22}=e_{33}=e_{23}=0, e_{12}=\frac{1}{2} u_{1,2}, e_{13}=\frac{1}{2} u_{1,3} ;$
-stress equations:
$\tau_{11}=\tau_{22}=\tau_{33}=\tau_{23}=0, \tau_{12}=c_{66} u_{1,2} \tau_{13}=c_{66} u_{1,3}$.
Consequently, Cauchy's first equation yields the following, but second and third are identically satisfied
$\tau_{12,2}+\tau_{13,3}=0$.
Using equations (4) and (5), the equilibrium equation satisfied by u_{1} can be written in the following form:

$$
\begin{equation*}
u_{1,22}+u_{1,33}=0 . \tag{6}
\end{equation*}
$$

3. FORMULATION AND SOLUTION OF THE PROBLEM

Consider a horizontal transversely isotropic elastic plate of thickness H lying over a base. The origin of Cartesian coordinates system $\left(x_{1} x_{2} x_{3}\right)$ is taken at the upper boundary of the plate and x_{2}-axis is drawn into the medium. The transversely isotropic elastic plate occupies the region $0<x_{2} \leq H$ and the region $x_{2}>H$ is the base over which the plate is lying (Fig. 1).

Fig -1: Section of the model by the plane $x_{1}=0$.

Let a shear-load P per unit area is acting over the strip $\left|x_{3}\right| \leq h$ of the surface $x_{2}=0$ in the positive x_{1}-direction. The boundary condition at the surface $x_{2}=0$ is
$\tau_{12}= \begin{cases}-P, & \left|x_{3}\right| \leq h \\ 0, & \left|x_{3}\right|>h\end{cases}$

The interface $x_{2}=H$ between the plate and the base may be 'perfectly bonded'. Thus, at $x_{2}=H$, the continuity of the displacement and shear stress τ_{12} implies [14]
$u_{1}\left(x_{2}=H-\right)=u_{1}\left(x_{2}=H+\right)$.
$\tau_{12}\left(x_{1}=H-\right)=\tau_{12}\left(x_{1}=H+\right)$.
We shall find the deformation field at any point of the transversely isotropic elastic plate corresponding to 'perfectly bonded' between the plate and the base due to strip-loading.

The Fourier transform of $X\left(x_{2}, x_{3}\right)$ is defined as

$$
\begin{equation*}
\bar{X}\left(x_{2}, k\right)=\int_{-\infty}^{\infty} X\left(x_{2}, x_{3}\right) e^{i k x_{3}} d x_{3} \tag{9}
\end{equation*}
$$

so that
$X\left(x_{2}, x_{3}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \bar{X}\left(x_{2}, k\right) e^{-i k x_{3}} d k$.
Taking the Fourier transform of (6), we get

$$
\begin{equation*}
\frac{d^{2} \bar{u}_{1}}{d x_{2}^{2}}-k^{2} \bar{u}_{1}=0, \quad c_{66} \neq 0 . \tag{11}
\end{equation*}
$$

The solution of the ordinary differential equation (11) is
$\bar{u}_{1}=C_{1} e^{|k| x_{2}}+C_{2} e^{-|k| x_{2}}$.
where C_{1} and C_{2} may be functions of k.
By using inverse Fourier transform, we have
$u_{1}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(C_{1} e^{|k| x_{2}}+C_{2} e^{-|k| x_{2}}\right) e^{-i k x_{3}} d k$.

Using equation (13) and equation (4), the shear stresses are
$\tau_{12}=\frac{c_{66}}{2 \pi} \int_{-\infty}^{\infty}\left(C_{1} e^{|k| x_{2}}-C_{2} e^{-|k| x_{2}}\right) e^{-i k x_{3}}|k| d k$,
$\left.\tau_{13}=-\frac{i c_{66}}{2 \pi} \int_{-\infty}^{\infty}\left(C_{1} e^{|k| x_{2}}+C_{2} e^{-k \mid x_{2}}\right) e^{-i k x_{3}} k d k\right]$.
Using the boundary condition (7), we have
$\bar{\tau}_{12}=\frac{-2 P}{\pi} \sin k h$.

Therefore,
$\tau_{12}=\frac{-P}{\pi} \int_{-\infty}^{\infty}\left(\frac{\sin k h}{k}\right) e^{-i k x_{3}} d k$.
From (14) and (16), we obtain

$$
\begin{equation*}
C_{1}-C_{2}=-\frac{2 P}{c_{66}}\left(\frac{\sin k h}{k|k|}\right) . \tag{18}
\end{equation*}
$$

3.1Perfectly Bonded

The displacement in the transversely isotropic elastic halfspace $x_{3}>H$ is
$u_{1}^{\prime}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} C_{2}^{\prime} e^{-|k| x_{2}} e^{-i k x_{3}} d k$,
where the coefficient C_{2}^{\prime} is to be determined from the boundary conditions. Then
$\tau_{12}^{\prime}=-\frac{c_{66}^{\prime}}{2 \pi} \int_{-\infty}^{\infty} C_{2}^{\prime} e^{--k \mid \times 2} e^{-i k x_{3}}|k| d k$,
$\tau_{13}^{\prime}=-\frac{i c_{66}^{\prime}}{2 \pi} \int_{-\infty}^{\infty} C_{2}^{\prime} e^{-k \mid x_{2}} e^{-i k x_{3}} k d k$.

Equations (8), (13), (14), (19) and (20) yield the relations
$C_{1} e^{|k| H}+C_{2} e^{-|k| H}=C_{2}^{\prime} e^{-|k| H}$
$c_{66}\left(C_{1} e^{|k| H}-C_{2} e^{-k \mid H}\right)=-c_{66}^{\prime} C_{2}^{\prime} e^{-|k| H}$.
Solving (18), (20) and (21), we get
$C_{1}=\frac{2 P \sin k h}{c_{66} k|k|}\left(\frac{m e^{-2|k| H}}{1-m e^{-2|k| H}}\right)$,
$C_{2}=\frac{2 P \sin k h}{c_{66} k|k|}\left(\frac{1}{1-m e^{-2|k| H}}\right)$,
$C_{2}^{\prime}=\frac{4 P \sin k h}{k|k|}\left(\frac{1}{1-m e^{-2 m|k| H}}\right)\left(\frac{1}{c_{66}+c_{66}^{\prime}}\right)$,
where $m=\left(c_{66}-c_{66}^{\prime}\right) /\left(c_{66}+c_{66}^{\prime}\right)$.
Using (24) in equations (13), (14) and (15), the deformation field has been obtained as follow

$$
\begin{align*}
& u_{1}=\frac{P}{\pi c_{66}} \int_{-\infty}^{\infty} \frac{\sin k h}{k|k|}\left[e^{-|k| x_{2}}+\sum_{n=1}^{\infty} m^{n} e^{-|k|\left(2 n H+x_{2}\right)}\right. \\
& \left.+\sum_{n=1}^{\infty} m^{n} e^{-k \mid\left(2 n H-x_{2}\right)}\right] e^{-i k x_{3}} d k, \tag{26}\\
& \tau_{12}=-\frac{P}{\pi}\left[\tan ^{-1} \frac{2 h x_{2}}{x_{3}^{2}+x_{2}^{2}-h^{2}}+\sum_{n=1}^{\infty} m^{n}\left\{\tan ^{-1} \frac{2 h\left(2 n H+x_{2}\right)}{x_{3}^{2}+\left(2 n H+x_{2}\right)^{2}-h^{2}},\right.\right. \tag{27}\\
& \left.\left.-\tan ^{-1} \frac{2 h\left(2 n H-x_{2}\right)}{x_{3}^{2}+\left(2 n H-x_{2}\right)^{2}-h^{2}}\right\}\right] \\
& \tau_{13}=\frac{P}{2 \pi}\left[\log \frac{\left(x_{3}+h\right)^{2}+x_{2}^{2}}{\left(x_{3}-h\right)^{2}+x_{2}^{2}}+\sum_{n=1}^{\infty} m^{n}\left(\log \frac{\left(x_{3}+h\right)^{2}+\left(2 n H+x_{2}\right)^{2}}{\left(x_{3}-h\right)^{2}+\left(2 n H+x_{2}\right)^{2}}\right.\right. \tag{28}\\
& \left.\left.+\log \frac{\left(x_{3}+h\right)^{2}+\left(2 n H-x_{2}\right)^{2}}{\left(x_{3}-h\right)^{2}+\left(2 n H-x_{2}\right)^{2}}\right)\right]
\end{align*}
$$

for $0 \leq x_{2} \leq H$ and for $x_{2}>H$
$u_{1}^{\prime}=\frac{2 P}{\pi}\left(\frac{1}{c_{66}+c_{66}^{\prime}}\right) \int_{-\infty}^{\infty}\left(\frac{\sin k h}{k|k|}\right)\left[e^{-k \mid x_{2}}+\sum_{n=1}^{\infty} m^{n} e^{-k \mid\left(2 n H+x_{2}\right)}\right] e^{-i k x_{3}} d k$,
$\tau^{\prime}{ }_{12}=-\frac{2 P c_{66}^{\prime}}{\pi\left(c_{66}+c_{66}^{\prime}\right)}\left[\tan ^{-1} \frac{2 h x_{2}}{x_{3}^{2}+x_{2}^{2}-h^{2}}+\sum_{n=1}^{\infty} m^{n} \tan ^{-1} \frac{2 h\left(2 n H+x_{2}\right)}{x_{3}^{2}+\left(2 n H+x_{2}\right)^{2}-h^{2}}\right]$,
$\tau_{13}^{\prime}=\frac{P}{\pi\left(c_{66}+c_{66}^{\prime}\right)}\left[\log \frac{\left(x_{3}+h\right)^{2}+x_{2}^{2}}{\left(x_{3}-h\right)^{2}+x_{2}^{2}}+\sum_{n=1}^{\infty} m^{n} \log \frac{\left(x_{3}+h\right)^{2}+\left(2 n H+x_{2}\right)^{2}}{\left(x_{3}-h\right)^{2}+\left(2 n H+x_{2}\right)^{2}}\right]$.

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 07 Issue: 06 | June 2020
www.irjet.net

4. PARTICULAR CASES

4.1. Isotropic Elastic Layered Half-Space

Taking $c_{66}=\mu$ in the equations (26)-(31), we obtain the deformation field for an isotropic elastic layered half-space

4.2.Shear Line-Load in Transversely isotropic Elastic Half Space

Taking $P=\frac{P_{0}}{2 h}$ (shear Line-load) and proceeding to limit $h \rightarrow 0, \quad$ the deformation field caused by shear line-load P_{0}, per unit length, acting at the boundary $x_{3}=0$ of the semiinfinite transversely isotropic elastic medium in the positive x_{1} - direction

$$
\begin{align*}
u_{1} & =\frac{P_{0}}{\pi c_{66}} \int_{0}^{\infty} k^{-1} \cos x_{3} e^{-k x_{2}} d k \tag{32}\\
& =-\frac{P_{0}}{2 \pi c_{66}} \log \left[x_{3}^{2}+x_{2}^{2}\right], \\
\tau_{12} & =-\frac{P_{0} x_{2}}{\pi\left[x_{3}^{2}+x_{2}^{2}\right]} \tag{33}\\
\tau_{13} & =-\frac{P_{0} x_{3}}{\pi\left[x_{3}{ }^{2}+x_{2}^{2}\right]} . \tag{34}
\end{align*}
$$

4.3.Transversely isotropic elastic half-space due to strip-loading:

On taking $c_{66}=c_{66}^{\prime}$ and $m=0$ in the equations (29)-(31)
$u_{1}=\frac{P}{\pi c_{66}} \int_{-\infty}^{\infty} \frac{\sin k h}{k|k|} e^{-|k| x_{2}} e^{-i k x_{3}} d k .$,
$\tau_{12}=-\frac{P}{\pi}\left[\tan ^{-1} \frac{2 h x_{2}}{x_{3}^{2}+x_{2}{ }^{2}-h^{2}}\right]$,
$\tau_{13}=\frac{P}{2 \pi}\left[\log \frac{x_{3}^{2}+x_{2}^{2}}{\left(x_{3}-h\right)^{2}+x_{2}^{2}}\right]$.

5. NUMERICAL RESULTS AND CONCLUSIONS

In this section, the effect of strip-loading in transversely isotropic elastic plate has been studied. For this contour maps of stresses given in equations (27)-(28) and (30)-(31) have been presented. We use the values of elastic constants of Zinc Material

$$
c_{11}=161, c_{22}=61, c_{66}=38.3, c_{12}=34.2, c_{22}=50.1 \text { (in Gpa) }
$$

for the layered medium and magnesium material with elastic constants
$c_{11}^{\prime}=59.7, c_{22}^{\prime}=61.7, c_{66}^{\prime}=16.4, c_{12}^{\prime}=26.2, c_{22}^{\prime}=21.7(\mathrm{inGPa})$ for the transversely isotropic half-space (base) which are given by Bower[14].
Define dimensionless distances, displacement and stresses as

$$
X_{2}=\frac{x_{2}}{H}, X_{3}=\frac{x_{3}}{H}, \sigma_{12}=\frac{\tau_{12}}{H}, \sigma_{13}=\frac{\tau_{13}}{H}, \sigma_{12}^{\prime}=\frac{\tau_{12}^{\prime}}{H} \text { and } \sigma_{13}^{\prime}=\frac{\tau_{13}^{\prime}}{H} .
$$

Figures 2(a)-(d) and 3(a)-(d) show the variations of shear stresses σ_{12} and σ_{13}, respectively, for $\mathrm{h}=0.25,0.50,0.75 \& 1$ in the transversely isotropic elastic layer. Figures 4(a)-(d) and $5(\mathrm{a})$-(d) present the variation of shear stresses σ_{12} and σ_{13}, respectively, for $\mathrm{h}=0.25,0.50,0.75 \& 1$ in the transversely isotropic elastic half-space. These contour analyses the stress field of transversely isotropic elastic plate corresponding to 'perfectly bonded' between the plate and the base due to strip-loading.

Fig. 4(b)

REFERENCES

[1] A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover Publications, New York, 1944.
[2] T. Mauryama, "On Two-Dimensional Elastic Dislocations in an Infinite and Semi-Infinite Medium", Bull. Earthq. Res. Inst., University of Tokyo, vol. 44, Dec. 1966, pp. 811-871.
[3] Y. Okada, "Surface Deformation due to Inclined Shear and Tensile Faults in a Homogenous Isotropic HalfSpace", Bull. Seismol. Soc. Am., vol. 75, Aug. 1985, pp. 1135-1154.
[4] Y. Okada, "Internal Deformations due to Shear and Tensile Faults in a Half-Space", Bull. Seismol. Soc. Am., vol. 82, Apr. 1992, pp. 1018-1040.
[5] N. R. Garg, D. K. Madan, and R. K. Sharma, "TwoDimensional Deformation of an Orthotropic Elastic Medium due to Seismic Sources", Phy. Earth Planet. Int., vol. 94, Mar. 1996, pp. 43-62.
[6] T. C. T. Ting, " Antiplane Defomations of Anisotropic Elastic Materials, in Recent Advance in Elasticity, Viscoelasticity and Inelasticity (Edited By K. R. Rajgopal)", Series in advance in Mathematics in Applied Sciences., World Scientific, Singapore, vol. 26, 1995, pp. 150-179.
[7] K. Singh, D. K. Madan, A. Goel and N. R. Garg, "Two dimensional static deformation of an anisotropic medium", Sadhana, vol 30, Aug. 2005, pp. 565-583.
[8] D.K. Madan, S. Chugh and K. Singh, " Stresses in an Anisotropic Elastic Plate due to Strip-Loading", Int. J. Mech., vol. 5(2), 2011, pp. 57-62.
[9] D. K. Madan, P. Arya, N.R. Garg and K. Singh, "Stresses in an Orthotropic Elastic Layer Lying Over an Irregular Isotropic Elastic Half-Space", Int. J. Cur. Res. Rev., vol. 09, Feb. 2017, pp. 15-20
[10] D. Lürding, Y. Bașar and U. Hanskötter, "Application of transversely isotropic materials to multi-layer shell elements undergoing finite rotations and large", Int. J. Solids Struct., vol. 38, Dec. 2001, pp. 9493-9503.
[11] S. H. Mallik and M. Kanaoria "A two dimensional problem for a transversely isotropic generalized thermoelastic thick plate with spatially varying heat source", Euro. J. Mech.-A/Solids, vol. 27, Aug. 2008, pp. 607-621.
[12] B. Shen, J. S. M. Rinne, T. Siren, J. Suikkanen, S. Kwon and K. Min, "Two-dimensional displacement discontinuity method for transversely isotropic materials", Int. J. Rock Mech. Min., vol. 83, Mar. 2016, pp. 218-230.
[13] M. H. Sadd, Elasticity: Theory, Applications and Numerics, Academic Presss, 2005.
[14] A. F. Bower, Applied Mechanics of Solids , Taylor and Francis, 2012.

