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Abstract - The stresses at any point of transversely isotropic 
elastic plate due to strip-loading have been obtained. Anti-
plane strain problem with perfectly bonding boundary 
conditions is considered.  Here, Fourier Transformation on 
equilibrium equations has been used to obtain the solution of 
the problem. As particular cases: the stresses in an isotropic 
elastic layered half-space and due to shear line-load in 
transversely isotropic elastic half space have been obtained. 
Also, the deformation of a transversely isotropic elastic half-
space due to strip-loading can be obtained from our results. In 
order to study the effect of strip-loading in the elastic plate, 
contour maps have been presented. 

 
Key Words:  Transversely isotropic material, Strip-
loading, Shear line-load, Fourier transform, Perfectly 
bonded. 
 

1. INTRODUCTION 
 
The solution of the problem of the deformation of a 
horizontally layered elastic material under the action of the 
surface loads has been finding wide applications in 
engineering, geophysics and soil mechanics. When the 
source surface is very long in one direction in comparison 
with the others, the use of two-dimensional approximation is 
justified and consequently calculations are simplified to a 
great extent and one gets a closed form analytical solution.  A 
very long strip-source and a very long line-source are 
examples of such two-dimensional sources. Love [1] 
obtained expressions for the displacements due to a line 
source in an isotropic elastic medium. Maruyama [2] 
obtained the displacement and stress fields corresponding to 
long strike-slip faults in a homogenous isotropic half-space. 
Okada [3, 4] provided compact analytic expressions for the 
surface deformation and internal deformation due to 
inclined shear and tensile faults in homogenous isotropic 
half-space. 

Garg et al. [5] obtained an analytical solution for the 
deformation of an orthotropic layered half-space caused by 
along strike-slip fault. Ting [6] derived the Green’s functions 
for a line force and a screw dislocation for the anti-plane 
deformation of a monoclinic elastic medium consisting of a 
single half-space or two half-spaces in ‘perfect’ contact. Singh 
et al. [7] have studied the problem of two-dimensional static 
deformation of a monoclinic elastic medium using the 
eigenvalue method, following a Fourier transform. Madan et 
al. [8] have obtained the stresses in an Anisotropic Elastic 

Plate due to Strip-Loading. Madan et al. [9] have calculated 
the stresses in an orthotropic elastic layer lying over an 
irregular isotropic elastic half-space. 

Lurding et al. [10] have taken an application of transversely 
isotropic materials to multi-layer shell elements undergoing 
finite rotations and large strains. Mallik and Kanoria[11] 
have discussed a two dimensional problem for a transversely 
isotropic generalized thermoelastic thick plate with spatially 
varying heat source. Shen et al. [12] have presented the 
fundamental solution for a two-dimensional displacement 
discontinuity method (DDM) for transversely isotropic 
elastic materials.  

For a transversely isotropic material, there is an axis of 
material symmetry (defined as a direction with respect to 
which the material has identical properties) in addition to 
three planes of symmetry. The calculation of anti-plane 
deformation due to a line source in a transversely isotropic 
medium is much more difficult than the corresponding 
calculation for a source in an orthotropic medium because of 
the presence of the mixed derivatives in the equation of 
equilibrium. In geophysics, the elastic plate represents the 
crust of the earth.  

In the present paper, the closed-form expressions for the 
stresses due to strip-loading in a horizontal transversely 
isotropic elastic plate of an infinite lateral extent lying over a 
base have been obtained. The interface between the plate 
and the base is considered to be ‘perfectly bonded’. The 
deformation of the transversely isotropic elastic plate 
corresponding to ‘perfectly bonded’ boundary conditions has 
been obtained. The particular cases are considered as the 
stresses in an isotropic elastic layered half-space, the 
stresses due to shear line-load in transversely isotropic 
elastic half-space and the deformation of a transversely 
isotropic elastic uniform half-space due to strip-loading have 
been obtained. Contours have been presented to show the 
stress field causing the effect of strip-loading in a 
transversely isotropic elastic plate. 

 

2. FUNDAMENTAL EQUATIONS 

The constitutive matrix equation of a transversely isotropic 
material has the following form [13] 
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In equation (1), we used Voigt’s convention by which the 
tensional indices are replaced by matrix indices in the 
expression of the stress and shear components 

i
 and

i
e  6,5,4,3,2,1i . The elements 6,5,4,3,2,1,, jic

ij
 

of the stiffness matrix from (1) represent the elasticity’s of 
the transversely isotropic material. A transversely isotropic 
material has 5 independent elastic constants and 12 non-
zero terms. 
The field’s equations of a transversely isotropic material in 
anti-plane strain equilibrium state are: 

-displacement equations:  

  ;0,,
323211
 uuxxuu

                                           (2) 

-strain equations: 

;
2

1
,

2

1
,0

3,1132,11223332211
ueueeeee                         (3)              

-stress equations: 

.,,0
3,166132,1661223332211

ucuc  
                         

(4)

 

Consequently, Cauchy’s first equation yields the following, 
but second and third are identically satisfied 

0
3,132,12
 .                                                                          (5) 

Using equations (4) and (5), the equilibrium equation 

satisfied by 
1

u  can be written in the following form: 

0
33,122,1
uu .                                                                              (6) 

3. FORMULATION AND SOLUTION OF THE PROBLEM 

Consider a horizontal transversely isotropic elastic plate of 
thickness H lying over a base. The origin of Cartesian co-
ordinates system  

321
xxx  is taken at the upper boundary of 

the plate and 
2

x -axis is drawn into the medium. The 

transversely isotropic elastic plate occupies the 

region Hx 
2

0 and the region Hx 
2 is the base over 

which the plate is lying (Fig. 1).   
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Fig -1: Section of the model by the plane 
1

x  = 0. 

 

Let a shear-load P per unit area is acting over the strip 

hx 
3

 of the surface 0
2
x

 
in the positive 

1
x direction. 

The boundary condition at the surface 02 x   is   



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




hx

hxP

3

3

12
,0

,
                                                                      (7) 

The interface Hx 
2 between the plate and the base may be 

‘perfectly bonded’. Thus, at Hx 
2 , the continuity of the 

displacement and shear stress
12
  implies [14] 

   .
2121

 HxuHxu  

   .
112112

 HxHx                                                     (8) 

We shall find the deformation field at any point of the 
transversely isotropic elastic plate corresponding to 
‘perfectly bonded’ between the plate and the base due to 
strip-loading.  

The Fourier transform of  
32

, xxX is defined as 

   
3

3

322
,, xdexxXkxX

xki






 ,                                            (9)    

so that  

    kdekxXxxX
xki 3

232
,

2

1
,









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Taking the Fourier transform of (6), we get 
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c                                            (11) 
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The solution of the ordinary differential equation (11) is 

2

2

2

11

xkxk
eCeCu


 .                                                           (12) 

where
1

C  and 
2

C  may be functions of k. 

By using inverse Fourier transform, we have 
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2
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Using equation (13) and equation (4), the shear stresses are 
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Using the boundary condition (7), we have 

.sin
2
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P
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Therefore, 
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From (14) and (16), we obtain 
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3.1Perfectly Bonded 

    The displacement in the transversely isotropic elastic half-
space Hx 

3
 is 
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where the coefficient 
2

C  is to be determined from the 

boundary conditions. Then
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    Equations (8), (13), (14), (19) and (20) yield the relations 
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  .
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    Solving (18), (20) and (21), we get 
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where    
66666666

ccccm  .                                                    (25) 

    Using (24) in equations (13), (14) and (15), the deform- 
ation field has been obtained as follow 
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for Hx 
2

0 and for Hx 
2  
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4. PARTICULAR CASES 
 
4.1. Isotropic Elastic Layered Half-Space 

Taking 
66

c in the equations (26)-(31), we obtain the 

deformation field for an isotropic elastic layered half-space 

4.2.Shear Line-Load in Transversely isotropic 
Elastic Half Space 

Taking
h

P
P

2

0  (shear Line-load) and proceeding to limit 

,0h   the deformation field caused by shear line-load 

,
0

P per unit length, acting at the boundary 0
3
x of the semi-

infinite transversely isotropic elastic medium in the positive 
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x direction 
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4.3.Transversely isotropic elastic half-space due 
to strip-loading:  

    On taking 6666
cc   and 0m in the equations (29)-(31)  
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5. NUMERICAL RESULTS AND CONCLUSIONS 

In this section, the effect of strip-loading in transversely 
isotropic elastic plate has been studied. For this contour 
maps of stresses given in equations (27)-(28) and (30)-(31) 
have been presented. We use the values of elastic constants 
of Zinc Material 

,61,161
2211
 cc 3.38

66
c , 1.50,2.34

2212
 cc (in Gpa) 

for the layered medium and magnesium material with 
elastic constants 

7.21,2.26,4.16,7.61,7.59
2212662211
 ccccc (in GPa) 

for the transversely isotropic half-space (base) which are 
given by Bower[14] . 

 
Define dimensionless distances, displacement and stresses 
as 

,, 3

3
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2
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x
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x
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
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Figures 2(a)-(d) and 3(a)-(d) show the variations of shear 
stresses

12
  and 

13
 , respectively, for h=0.25, 0.50, 0.75 & 1 

in the transversely isotropic elastic layer. Figures 4(a)-(d) 
and 5(a)-(d) present the variation of shear stresses

12
  

and
13

 , respectively, for h=0.25, 0.50, 0.75 & 1 in the 

transversely isotropic elastic half-space. These contour 
analyses the stress field of transversely isotropic elastic plate 
corresponding to ‘perfectly bonded’ between the plate and 
the base due to strip-loading.  
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