

Quality Assessment and Quality Control of Cement Concrete by Using Ultrasonic Pulse Velocity (USPV) Test

Ram Pratap Maurya¹, V.K. Singh²

¹Assistant Professor, Department of Civil Engineering, Seth Vishambhar Nath Institute of Engineering and Technology, Barabanki, Uttar Pradesh, India ²Associate Professor, Department of Civil Engineering, Institute of Engineering and Technology, Lucknow, Uttar Pradesh, India

***_____

ABSTRACT: In this study total 135 ultrasonic pulse velocity and direct compression test was performed on 135 site laboratory made cubes of age 28 days for development of regression models by using Microsoft Excel software package. USPV model that consists of 6 models i.e. linear, quadratic parabola, cubic parabola, exponential, logarithmic and power model. In this model also linear model is referred due to being simple and no chance of modification of error in measurement of USPV value due to the various factors including age, curing conditions, moisture condition, mix proportions, type of aggregate and type of cement etc. Maximum variation in model predicted strength of structural concrete member and strength of the cube made same concrete is determined. This maximum variation for USPV linear model is 29.838%.

Key Words: Non Destructive Testing (NDT), Destructive Testing (DT), Ultrasonic Pulse Velocity (USPV), Compressive Strength, Regression Models, Correlation

Introduction: It is often necessary to test the quality of concrete in fresh and harden state to determine its suitability for which it is being used. Quality control of concrete lead to safe and cost-effective structures that requires minimal maintenance and cause minimal inconvenience. Ideally such testing should be done in fresh state by testing the properties of fresh concrete such as slump, air content, air-void system, setting time, unit weight, and temperature and in hardened state test available for testing the concrete without damaging the concrete called completely non-destructive test (NDT) such as Schmidt's Rebound Hammer Test, Ultrasonic Pulse Velocity Test, Rebar locator test etc., test available for testing the concrete surface and surface has to be repaired after the test called partially destructive test, such as core test, pull out pull off, break off test etc. and test available for testing concrete by damaging the concrete strength test, tensile strength test etc. The range of properties that can be assessed using non-destructive tests and partially destructive tests is quite large and includes such fundamental parameters as density, elastic modulus and strength as well as surface hardness and surface absorption, and reinforcement location, size and distance from the surface. It is been found that the use of NDT techniques are much reliable and can well be fit to assess the quality of concrete structures.

Purpose and Scope of Work: One of the purposes of testing hardened concrete is to confirm that the concrete used at site has developed the required strength. As the hardening of the concrete takes time, one will not come to know, the actual strength of concrete for some time. In present work destructive testing (DT) i.e. compressive strength was used to assess the compressive strength of concrete and non-destructive testing (NDT) i.e. ultrasonic velocity test (USPV) were used to predict the in-place compressive strength and quality of the concrete. USPV test reflects the inner properties of concrete.

Literature Review: Work done by the various researchers on USPV and Cube compressive strength for stabilizing correlation between them to predict the strength of structural concrete has been broadly studied before this work.

Selection of Study Location: Data collection of present research work is done at site of under construction Super Specialty Cancer Institute (**Fig. 1**) near Gajaria Form Sultanpur road, Lucknow and in the laboratory of Mukesh & Associate Consultant and Engineers company working as a third party for quality control of construction work at that site.

Fig. 1 Under Construction Super Specialty Cancer Institute near Gajaria Form Sultanpur road Lucknow

Preparation of Cube Sample: Various cube specimen of size $15 \times 15 \times 15$ cm were prepared for USPV test and cube compressive strength test. The cube specimen are made as soon as practicable after mixing and in such a way as to produce full compaction of concrete with neither segregation nor excessive laitance. The concrete is filled into mould in layers approximately 5 cm deep. In placing each scoopful of concrete, the scoop is required to be moved around the top edge of the mould as the concrete slide from it, in order to ensure the symmetrical distribution of level with the top of the mould, using trowel the concrete within the mould. Each layer is compacted by 35 stokes. Stokes penetrates into the underlying layer and the bottom layer is rodded throughout the depth. After the top layer has been compacted the surface of the concrete is brought to be finished level with the top of the mould, using a trowel. The top is covered with the metal sheet to prevent the evaporation. The test specimen are stored on site at a place free from vibration for 24 hours $\pm 1/2$ hour from the time of addition of water to the other ingredients. Temperature of the place of the storage should be within the range of 22° to 32° C. After the period of 24 hours, they should be marked for later identification removed from the moulds. Now, specimens are stored water for 28 days at temperature of $27^{\circ}\pm 2^{\circ}$ C. Six cubes are prepared for heavily loaded beam, column and slab while for lightly loaded beam, column and slab three cubes were prepared.

USPV Test Methodology:

1. To ensure the accuracy of measurement and performance calibrate the USPVT by measuring the transit time on a standard calibration rod supplied along with equipment by manufacturer. (Fig. 2)

2. Remove the specimen of curing age 28 days from water and Wiped off the surface water and grit and remove any projection on the surface and make the specimen completely dry.

3. Note the dimension of specimen nearest 0.2 mm and their weight before testing.

4. Clean the bearing surface of the testing machine and remove loose sand and any other material from the surface of the specimen

5. Take least three reading on each 28 days cube (one reading on two opposite faces) by USPV tester.(Fig. 3)

6. Take 8 USPV reading on each 28 days structure such as beams, columns, slabs and footing (Fig. 4, 5,6)

Compressive Strength Test Methodology:

1. Place the cube in CTM in such a manner that the load shall be applied to opposite sides of the cubes as cast that is not to the top and bottom.

2. Carefully align the axis of the specimen with the centre of thrust of the spherically seated platen.

3. Apply load without shock and Increase continuously at a rate of approximately 140 kg/sq cm/min until the resistance of the specimen to the Increasing load breaks down.(Fig.7)

4. Record the maximum load applied and note appearance of the concrete and any unusual feature in type of failure.

5. Strength of the specimen can be found by dividing max. load to the cross sectional area of the specimen.

6. Take the average of the three value of the strength, make sure that individual variation should not be more than ±15%.

Detail of Experimental Work:

Fig.2: Calibration of USPV Tester

Fig.3 USPVT on Cube

Fig. 4: USPV on Column

Fig.5.: USPV on Slab

Fig. 6: USPV on Plinth Beam

Fig.7: Cube Compressive Strength Test

Data Collection of Cube Compressive Strength Test and USPV Test:

Data obtained by performing USPV test on 28 days hardened cube and structural concrete such as column, beam, slab and wall are represented in tabular form.(Table.1)

						ι	J.S.P.V. T	est on St	ructure	(Km/sec	:)				/. Test or [Km/sec]				
S. No.	Name of Element	Mix	28' Day Cube Compressive Strength (N/mm²)	Age of Test (Days)	1	2	3	4	5	6	7	8	Avg. Value	1	2	3	Avg. Value		
	Column 1		33.78											4.581	4.491	4.596	4.556		
1	(600)	M30	M30	33.33	28	4.561	4.407	4.681	4.518	4.489	4.334	4.713	4.435	4.517	4.466	4.630	4.588	4.561	
	. ,		35.56 39.56											4.732 4.794	4.763	4.660	4.718		
2	Column 2	M30	40.00	28	4.412	4.677	4.535	4.715	4.172	4.623	4.365	4.488	4.498	4.794	4.763	4.770	4.776		
2	(600)	14130	38.22	20	7.712	4.077	4.555	4.715	7.172	4.025	4.303	4.400	4.470	4.735	4.832	4.632	4.733		
			32.00											4.532	4.602	4.321	4.485		
3	Column 3	M30	34.67	28	4.544	4.287	4.172	4.838	4.461	4.795	4.494	4.171	4.470	4.661	4.423	4.498	4.527		
	(600)		32.89											4.462	4.440	4.566	4.489		
	Column 4		30.67											4.398	4.446	4.467	4.437		
4	(600)	M30	32.00	28	4.178	4.853	4.763	4.296	3.935	4.354	4.637	4.262	4.410	4.461	4.521	4.379	4.454		
	(000)		30.67											4.436	4.449	4.434	4.440		
			33.33	_										4.599	4.392	4.462	4.484		
	Poarch Slab 1 (500)		34.67 32.89	-										4.673	4.468 4.497	4.484 4.532	4.542 4.480		
5		M25	32.89	28	4.128	4.296	3.838	4.087	4.273	3.869	4.370	4.212	4.134	4.412	4.497	4.532	4.480		
	(300)		31.11	-										4.483	4.436	4.419	4.446		
			30.22											4.360	4.360	4.541	4.420		
	0.1 F		41.78											4.822	4.743	4.772	4.779		
6	Column 5 (600)	M30	38.67	28	4.513	4.396	4.455	4.586	4.273	4.386	4.677	4.416	4.463	4.696	4.710	4.660	4.689		
	(800)		40.00										4.740	4.648	4.810	4.733			
	Column 6		36.00											4.561	4.496	4.568	4.542		
7	(600)	M30	35.11	28	4.361	4.196	4.582	4.489	4.273	4.317	4.549	4.352	4.390	4.574	4.581	4.550	4.568		
	(crity)		35.56											4.690	4.568	4.533	4.597		
8	Column 7	M30	36.44 35.56	28	4.043	4.294	4.281	4.022	3.868	4.324	4.489	4.269	4 1 0 0	4.672 4.388	4.680 4.521	4.501 4.634	4.618 4.514		
0	(750)	M30	38.67	20	4.045	4.294	4.201	4.022	3.000	4.524	4.409	4.209	9 4.199	4.632	4.521	4.634	4.685		
			35.56											4.569	4.555	4.343	4.489		
9	Column 8	M30	34.67	28	4.384	4.588	4.449	3.959	4.573	4.465	4.638	4.495	4.444	4.562	4.542	4.337	4.480		
	(600)		36.44	1										4.443	4.692	4.672	4.602		
	Column 0		43.11											4.702	4.669	4.802	4.724		
10	Column 9 (1200)	M40	37.78	28	4.925	4.711	4.745	4.768	4.854	4.687	4.799	4.843	4.792	4.674	4.690	4.671	4.678		
	(1200)		37.78											4.684	4.732	4.596	4.671		
1.1	Plinth Beam	MOR	35.56	20	0.071	4 204	1.257	2.000	4.054	4 004	4 2 2 2	2011	4.107	4.567	4.632	4.732	4.644		
11	1 (230)	M25	36.44	28	3.971	4.384	4.256	3.939	4.376	4.281	4.323	3.961	4.186	4.769	4.602	4.583	4.651		
\vdash	-		37.78 36.00											4.678 4.378	4.657 4.573	4.753 4.497	4.696 4.483		
12	Lift Wall 1	M30	35.11	28	4.344	4.287	4.274	4.539	4.322	4.508	4.334	4.452	4.383	4.378	4.655	4.497	4.483		
	(230)	(230)	M30	M30	37.78	20	1.511	1.207	1.2/1	1.557	1.522	1.500	1.554	1.152	1.505	4.780	4.554	4.654	4.663
	<u> </u>		46.22											4.881	5.063	4.823	4.922		
13	Column 10 (1200)	M40	44.00	28	4.952	4.811	4.644	5.079	4.655	4.567	4.862	4.663	4.779	4.943	4.803	4.865	4.870		
	. ,		40.44											4.745	4.625	4.693	4.688		
14	Plinth Beam	M25	35.56	28	3.994	4.346	4.125	4.192	4.336	4.256	4.259	4.383	4.236	4.396	4.658	4.447	4.500		
												- 1.61	1						

Table.1: Cube Compressive Strength Test and USPV Test Data

© 2020, IRJET

L

1

e-ISSN: 2395-0056 p-ISSN: 2395-0072

IRJET Volume: 07 Issue: 06 | June 2020

www.irjet.net

	2 (230)		40.00	1									I	4.690	4.690	4.734	4.705	
			37.33											4.688	4.497	4.637	4.607	
	Column 11		36.44										i.	4.486	4.660	4.568	4.571	
15	(600)	M30	35.56	28	4.404	4.616	3.964	4.335	4.664	4.594	4.794	4.315	4.461	4.334	4.454	4.585	4.458	
	(000)		38.67											4.457	4.886	4.576	4.640	
Calumn 12	Column 12		37.78											4.703	4.422	4.736	4.620	
16	(750)	M30	36.44	28	4.393	4.579	4.266	4.473	4.375	4.435	4.459	4.458	4.430	4.672	4.535	4.566	4.591	
	(750)		38.67											4.465	4.686	4.855	4.669	
	Column 13		36.00											4.418	4.569	4.630	4.539	
17		M30	35.11	28	4.400	4.391	4.549	4.306	4.395	4.674	4.325	4.494	4.442	4.364	4.697	4.561	4.541	
	(600)		35.56											4.654	4.547	4.570	4.590	
			33.78											4.387	4.654	4.475	4.505	
18	Column 14	M30	33.33	28	4.358	4.496	4.376	4.418	4.462	4.236	4.659	4.587	4.449	4.460	4.453	4.561	4.491	
10	(600)	1.100	34.67	-0			1.07.0				1.007			4.679	4.490	4.444	4.538	
			42.67											4.664	4.894	4.568	4.709	
19	Column 15	M40	43.56	28	4.238	4.456	4.344	4.634	4.135	4.439	4.896	4.643	4.473	4.886	4.754	4.791	4.810	
19	(1200)	14140	43.30	20	4.230	4.450	4.544	4.034	4.155	4.439	4.090	4.045	4.475	4.886	4.754	5.211	4.950	
			32.44									ł		4.346	4.467	4.622		
20	Column 16	1420	-	20	4 45 4	4 202		4 450	4 5 4 5	4 2 0 1	1 (1 2	4.007	4 4 4 4				4.478	
20	(600)	M30	30.67	28	4.454	4.283	4.548	4.459	4.515	4.301	4.642	4.327	4.441	4.316	4.563	4.234	4.371	
	. ,		31.11									ł		4.435	4.656	4.256	4.449	
			44.44											4.765	5.020	4.899	4.895	
			44.00	4										4.955	4.744	4.845	4.848	
21	Column 17	M30	38.67	28	4.531	4.449	4.446	4.138	4.517	4.543	4.402	4.654	4.460	4.656	4.700	4.564	4.640	
	(600)		39.11											4.561	4.595	4.788	4.648	
			39.56	1										4.733	4.747	4.696	4.725	
			41.33									I		4.807	4.718	4.683	4.736	
			36.00									I T		4.361	4.692	4.433	4.495	
			37.78											4.764	4.365	4.634	4.588	
22	Column 18	MOF	38.67	20	4 = 1 0	4 200	4 (02	4 5 1 0	4.262	4 3 2 1	1 466	2 000	4 2 7 1	4.386	4.802	4.765	4.651	
22	(450)	M25	36.89	28	4.510	4.398	4.602	4.518	4.363	4.221	4.466	3.890	4.371	4.627	4.633	4.631	4.630	
			35.11	1										4.408	4.667	4.443	4.506	
				36.44	1										4.538	4.641	4.438	4.539
			33.78	1										4.270	4.512	4.433	4.405	
23	Plinth Beam	¹ M25		28	4.272	4.238	4.314	4.290	4.197	4.333	4.115	4.277	4.255	4.586	4.465	4.411	4.487	
25	3 (230)		36.00	20	7.2/2	7.230	7.317	7.270	7.177	4.555	7.113	1.4//	7.433	4.644	4.403	4.449	4.589	
			37.78											4.044	4.673	4.449	4.655	
24	Column 19	MOO		28	1 404	1 3 4 4	1200	1 = 1 4	1 202	1 460	4 522	1 110	1 4 4 2					
24	(600)	M30	36.89	28	4.484	4.344	4.366	4.544	4.383	4.468	4.533	4.416	4.442	4.523	4.465	4.543	4.510	
	-		36.00									ł		4.510	4.493	4.510	4.504	
25	Plinth Beam	MOT	28.89	20	2.004	4.945	1010	4.105	4 1 6 4	4 1 4 4	4.072	4 4 4 -	4 1 1 0	4.386	4.300	4.355	4.347	
25	4 (230)	M25	31.11	28	3.984	4.267	4.010	4.185	4.164	4.144	4.073	4.115	4.118	4.488	4.464	4.502	4.485	
	()		32.44									I		4.543	4.467	4.496	4.502	
	Column 20		32.44	4										4.300	4.433	4.465	4.399	
26	(600)	M30	31.56	28	4.128	4.435	4.382	4.306	4.011	4.297	4.151	4.480	4.274	4.517	4.437	4.481	4.478	
	(000)		30.67											4.278	4.342	4.278	4.299	
	Plinth Beam		34.22												4.591	4.487	4.528	4.535
27	5 (230)	M25	33.33	28	3.932	3.872	4.863	4.820	4.841	4.968	4.071	4.064	4.429	4.436	4.503	4.454	4.464	
	3 (230)		35.11											4.700	4.432	4.455	4.529	
	Dlinth D		28.89											3.856	4.367	4.430	4.218	
28	Plinth Beam	M25	31.11	28	4.244	3.793	3.890	4.078	4.289	4.125	4.275	4.099	4.099	4.500	4.375	4.439	4.438	
	6 (230)		30.22											4.638	4.35	4.349	4.445	
	<u>.</u>		34.22											4.622	4.480	4.503	4.535	
29	Column 21	M30	35.11	28	4.415	4.366	4.408	4.374	4.435	4.451	4.360	4.444	4.407	4.571	4.526	4.585	4.561	
-	(600)		36.44									-		4.494	4.629	4.600	4.574	
			28.00									ł		4.365	4.385	4.430	4.393	
30	Column 22	M25	27.11	28	4.309	4.476	3.955	4.383	4.523	4.424	4.294	4.291	4.332	4.321	4.355	4.368	4.348	
	(450)		25.78			4.476	3.955	4.303						4.411	3.969	4.332	4.237	
			38.67	1										4.736	4.684	4.720	4.713	
31	Column 23	M30	35.56	28	4.611	4.584	4.661	4.606	4.413	4.146	4.638	4.445	4.513	4.738	4.004	4.720	4.713	
51	(600)	1150	39.11	20	1.011	1.504	1.001	1.000	-1.713	1.110	1.030	-тт-Ј	-1.J I J	4.845	4.576	4.545	4.506	
22	Tunnel Wall	Mag	34.67	20	4 4 2 1	1200	4 2 2 1	4111	4 4 2 0	4 407	4 3 2 0	4 375	1 3 4 9	4.471	4.445	4.480	4.465	
32	1 (500)	M30	31.56	28	4.431	4.368	4.331	4.116	4.430	4.406	4.338	4.375	4.349	4.423	4.354	4.482	4.420	
	,		30.22								L	I		4.330	4.466	4.428	4.408	
	Column 24		32.00								0.0			4.459	4.424	4.484	4.456	
33	(600)	M30	36.00	28	4.625	4.585	4.322	4.732	4.451	4.774	3.873	3.991	4.419	4.577	4.646	4.603	4.609	
	(300)		33.33									<u> </u>		4.600	4.537	4.610	4.582	
	Column 25		37.78	1										4.613	4.570	4.655	4.613	
34	(600)	M30	36.00	28	4.351	4.401	4.452	4.457	4.565	4.379	4.423	4.541	4.446	4.551	4.599	4.583	4.578	
	(000)		38.22											4.720	4.623	4.643	4.662	
	Column 26		37.33									I T		4.572	4.609	4.584	4.588	
35	Column 26	M30	36.44	28	4.512	4.605	4.407	4.365	4.520	4.452	4.565	4.465	4.486	4.558	4.498	4.526	4.527	
	(600)		37.78										L	4.620	4.57	4.500	4.564	
-			34.22	Γ										4.447	4.397	4.353	4.399	
36	Plinth Beam	M25	30.22	28	4.583	4.662	4.465	4.252	4.361	4.524	4.454	4.540	4.480	4.304	4.352	4.461	4.372	
-	7 (230)	~	33.78											4.432	4.401	4.445	4.426	
			28.44									ł		4.432	4.343	4.345	4.373	
37	Column 27	M25	30.67	28	4.003	4.078	4.285	4.253	4.443	4.473	4.465	4.110	4.264	4.451	4.347	4.376	4.391	
	(450)	1.123	29.78	20	1.005	1.070	1.205	1.200	1.145	1.475	1.405		1.207	4.343	4.452	4.370	4.376	
57	(-30)		30.22											4.343	4.452	4.334	4.376	
57			30.44	4		4.215	1 202	1 1 1 2	4 5 5 0	4 1 2 2		4.010	4 202		4.406	4.380	4.399	
	Lift Wall 2	M20	24 67	20	2 003		4.382	4.442	4.558	4.123	4.421	4.312	4.293				4.4/0	
37	Lift Wall 2 (230)	M30	34.67	28	3.892	4.215	4.302	4.442	4.558	4.123	4.421	4.312	4.293	4.457			1 1 1 1	
		M30 M25	34.67 32.44 34.67	28 28	3.892 4.346	4.435	4.352	4.179	4.558	4.123	4.421	4.312	4.293	4.457 4.403 4.607	4.443	4.388	4.411 4.473	

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 23

Volume: 07 Issue: 06 | June 2020

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

i i	8 (230)	1	35.56		1	1	1	1	1	1 1	1 1			4.627	4.556	4.584	4.589
	0 (230)		36.00											4.627	4.556	4.588	4.621
			40.00											4.762	4.647	4.695	4.701
40	Column 28	M40	40.89	28	4.517	4.864	4.641	4.819	5.314	4.723	4.524	4.834	4.780	4.746	4.812	4.656	4.738
40	(1200)	141-40	40.89	20	4.517	4.004	4.041							4.740	4.770	4.030	4.740
			35.56											4.566	4.488	4.503	4.519
41	Column 29 (600) Column 30	M30	36.00	28	4.328 4.472	4 472	2 4.561	4.586	4.449	4.474	4.458	4.425	4.469	4.669	4.476	4.303	4.534
41						4.472										-	
			33.33											4.468	4.455	4.354	4.426
40			36.00			4.492	4.453	4.534	4.335	4.359	4.272	4.572	4.438	4.593	4.578	4.554	4.575
42	(600)	M30	33.78	28	4.486									4.428	4.637	4.545	4.537
			34.22											4.397	4.560	4.553	4.503

Development of Ultrasonic Pulse Velocity Models:

Development of ultrasonic pulse velocity models (i.e. linear, quadratic and cubic parabola, exponential, power and logarithmic) are done using Microsoft Excel Software Package and models are shown in **fig.8**, **9,10,11,12** and **13**.

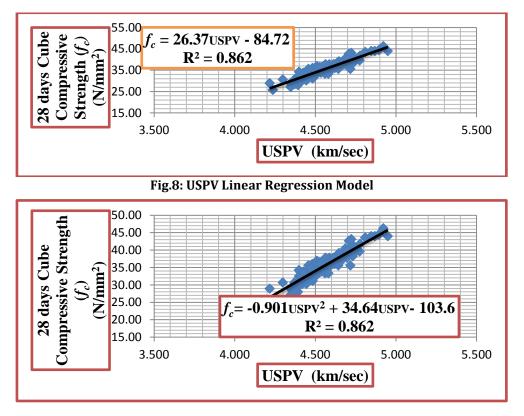


Fig.9: USPV Quadratic Parabolic Regression Model

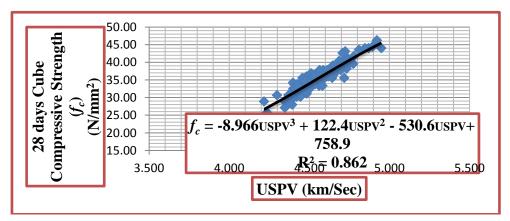


Fig. 10: USPV Cubic Parabolic Regression Model

50.00 **Compressive Strength** 45.00 40.00 **28 Days Cube** 35.00 (N/mm^2) 30.00 25.00 $f_c = 120.7 \ln(\text{USPV}) - 147.6$ 20.00 $R^2 = 0.862$ 15.00 3.500 4.000 4.500 5.000 5.500 USPV (km/sec)

Fig.11: Logarithmic Regression Model

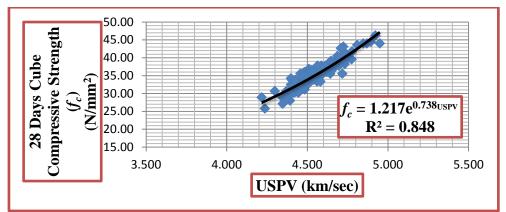
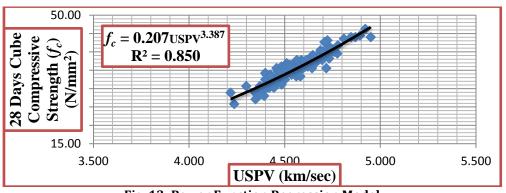



Fig. 12: Exponential Regression Model

Result of data analysis of USPV and cube compressive strength:

Following regression models are obtained on the basis of above developed correlation. (Fig.8, 9, 10, 11, 12, 13)

Table.2: USPV Models

S. No.	Model	Model Equation	Model R ² Value
1	Linear Regression Model	$f_c = 26.37 USPV - 84.72$	0.862
	Quadratic Parabolic Regression Model	f_c = -0.901USPV ² + 34.64USPV- 103.6	0.862
1 2	Cubic Parabolic Regression Model	f _c = -8.966USPV ³ + 122.4USPV ² - 530.6USPV+ 758.9	0.862
4	Power Regression Model	$f_c = 0.207 USPV^{3.387}$	0.850
5	Exponential Regression	$f_c = 1.217 e^{0.738 USPV}$	0.848

	Model		
6	Logarithmic Regression Model	$f_c = 120.7 ln(USPV) - 147.6$	0.862

All shows good relationship between USPV and cube compressive strength. Among all the developed models Linear, Quadratic Parabola, Cubic Parabola and Logarithmic Regression Model have highest R² value(i.e. 0.862) which implies that these models best correlation than other models but linear model is simple and there is less chance of magnification of error in prediction of compressive strength by error involved in measuring USPV due influence of various factors. That's why prediction of compressive strength by linear regression model in best which has same correlation that of Linear, Quadratic Parabola, Cubic Parabola and Logarithmic Regression Model.

Predicted of Compressive Strength of Structural Concrete by developed Linear Regression Model: After developing the correlation between cube compressive strength and USPV on cube the strength of the structural concrete can be predicted by putting the avg. USPV of structural concrete in developed correlation equation ' $f_c = 26.37USPV - 84.72'$ in place of '*USPV*' and finding corresponding ' f_c '. This value of ' f_c ' is the predicted strength of structural concrete and percentage variation or % error in development of relationship can be find out by formula given below (**Table.3**):

Table .3: %Variation of Linear USPV Model and Prediction of Strength of Structural Concrete by Linear USPVRegression Model

	Name of Element	Mix	Avg. Cube Compressive Strength	Avg. USPV Value on Structure	Predicted Compressive Strength of Structural Concrete Member by Linear Model N/mm2	%Variation between Cube Compressive Strength and Predicted Strength by Linear USPV Model	Remark Fail (If f _c < f _{ck}) O.K. (If f _c > f _{ck})
1	Column 1 (600)	M3 0	34.223	4.517	34.400	0.516	0.K.
2	Column 2 (600)	M3 0	39.260	4.498	33.902	-13.647	0.K.
3	Column 3 (600)	M3 0	33.187	4.470	33.160	-0.079	0.K.
4	Column 4 (600)	M3 0	31.113	4.410	31.565	1.452	0.K.
5	Poarch Slab 1 (500)	M2 5	32.815	4.134	24.297	-25.958	Result is not reliable due to Indirect Transmission
6	Column 5 (600)	M3 0	40.150	4.463	32.963	-17.901	0.K.
7	Column 6 (600)	M3 0	35.557	4.390	31.041	-12.700	0.K.
8	Column 7 (750)	M3 0	36.890	4.199	26.001	-29.517	Fail
9	Column 8 (600)	M3 0	35.557	4.444	32.465	-8.695	0.K.
10	Column 9 (1200)	M4 0	39.557	4.792	41.632	5.246	0.K.
11	Plinth Beam 1	M2 5	36.593	4.186	25.675	-29.838	0.K.
12	Lift Wall 1 (230)	M3 0	36.297	4.383	30.847	-15.016	0.K.
13	Column 10	M4 0	43.553	4.779	41.306	-5.161	0.K.
14	Plinth Beam 2	M2 5	37.630	4.236	26.993	-28.267	0.K.
15	Column 11 (600)	M3 0	36.890	4.461	32.910	-10.789	0.K.

IRJET Volume: 07 Issue: 06 | June 2020

www.irjet.net

16	Column 12 (750)	M3 0	37.630	4.430	32.093	-14.716	0.K.
17	Column 13 (600)	M3 0	35.557	4.442	32.409	-8.853	0.K.
18	Column 14 (600)	M3 0	33.927	4.449	32.600	-3.910	0.K.
19	Column 15	M4 0	43.410	4.473	33.236	-23.436	Fail
20	Column 16 (600)	M3 0	31.407	4.441	32.392	3.139	0.K.
21	Column 17 (600)	M3 0	41.185	4.460	32.890	-20.140	0.K.
22	Column 18 (450)	M2 5	36.815	4.371	30.543	-17.036	0.K.
23	Plinth Beam 3	M2 5	34.817	4.255	27.471	-21.098	0.K.
24	Column 19 (600)	M3 0	36.890	4.442	32.422	-12.111	0.K.
25	Plinth Beam 4	M2 5	30.813	4.118	23.865	-22.550	Fail
26	Column 20 (600)	M3 0	31.557	4.274	27.979	-11.338	Fail
27	Plinth Beam 5	M2 5	34.220	4.429	32.069	-6.285	0.K.
28	Plinth Beam 6	M2 5	30.073	4.099	23.374	-22.277	Fail
29	Column 21 (600)	M3 0	35.257	4.407	31.483	-10.704	0.K.
30	Column 22 (450)	M2 5	26.963	4.332	29.512	9.451	0.K.
31	Column 23 (600)	M3 0	37.780	4.513	34.288	-9.243	0.K.
32	Tunnel Wall 1	M3 0	32.150	4.349	29.973	-6.771	Fail
33	Column 24 (600)	M3 0	33.777	4.419	31.812	-5.816	0.K.
34	Column 25 (600)	M3 0	37.333	4.446	32.524	-12.881	0.K.
35	Column 26 (600)	M3 0	37.183	4.486	33.586	-9.675	0.K.
36	Plinth Beam 7	M2 5	32.740	4.480	33.421	2.080	0.K.
37	Column 27 (450)	M2 5	29.630	4.264	27.715	-6.463	0.K.
38	Lift Wall 2 (230)		32.443	4.293	28.490	-12.186	Fail
39	Plinth Beam 8	M2 5	35.410	4.403	31.390	-11.352	0.K.
40	Column 28	M4 0	40.443	4.780	41.315	2.156	0.K.
41	Column 29 (600)	M3 0	34.963	4.469	33.131	-5.241	0.K.
42	Column 30 (600)	M3 0	34.667	4.438	32.307	-6.807	0.K.

Discussion over USPV Models:

USPV tests were performed on 135 cubes by direct transmission for development of correlation between USPV by direct transmission and cube compressive strength. After that USPV tests were performed on 42 structural elements i.e. 30 on columns, 1 on slabs, 3 on walls of lift wells, and 8 on a beam. The characteristic strength of concrete for columns are 25 MPa, 30MPa and 40MPa and for lift wells and tunnel wall are 30MPa whereas for slabs and beam it is 25MPa. Developed

model are Linear Regression Model, Quadratic Parabola Regression Model, Cubic Parabola Regression Model, Exponential Regression Model, Power Regression Model and Logarithmic Regression Model. Linear, Quadratic Parabola, Cubic Parabola and Logarithmic Regression Model have R² value 0.862, Exponential Regression Model 0.848 and Logarithmic Regression Model 0.850. All shows good relationship between USPV and cube compressive strength. Among all the developed models Linear, Quadratic Parabola, Cubic Parabola and Logarithmic Regression Model have highest R² value(i.e. 0.862) which implies that these models best correlation than other models but linear model is simple and there is less chance of magnification of error in prediction of compressive strength by error involved in measuring USPV due influence of various factors. That's why prediction of compressive strength by linear regression Model. However the USPV increases as the strength increases and is also affected by a lot of parameters i.e. entity of the load, age of the concrete, form and the dimension of the structure, run length, presence of metallic reinforcements, water/cement ratio, state of strength, temperature, humidity of the concrete etc. That's why it not possible to develop a unique correlation between USPV is indicative of inner property of concrete.

Conclusion:

The following conclusions can be drawn based on the outcome of the experiment, analysis and discussion of ultrasonic pulse velocity test results:

1. The Presents study puts forward a useful mathematical linear and nonlinear relationships of USPV and cube compressive strength that help the engineer to predict confidently the compressive strength of concrete, by measuring the USPV by ultrasonic pulse velocity tester. The mathematical models presented are simple, quick, reliable, and covers wide ranges of concrete strengths (i.e. 25.78MPa to 44.44MPa). The method can be easily applied to concrete specimens as well as existing concrete structures.

2. The correlation coefficient of the proposed models (i.e. linear, quadratic parabola, exponential, power and logarithmic) of USPV ranges from 0.848-0.862. This shows USPV has good correlation with the compressive strength of concrete. That's why these models can be used in predicting compressive strength of concrete.

3. Among all the developed models linear model is adopted for prediction of strength of structural elements because it is simple and there is less chance of magnification of error in prediction of compressive strength by error involved in measuring USPV value due influence of various factors. Maximum variation between predicted compressive strength by linear USPV model and actual cube compressive strength is 29.838.

4. The deviation between actual results and predicted results may be attributed to the fact that there is not perfect correlation between cube compressive strength and USPV of the model prepared by regression analysis.

5. The quality of concrete is usually specified in terms of strength and it is therefore, sometimes helpful to use ultrasonic pulse velocity measurements to give an estimate of strength. The relationship between ultrasonic pulse velocity and strength is affected by a number of factor including age, curing conditions, moisture condition, mix proportions, type of aggregate and type of cement. That's why the assessment of compressive strength of concrete from ultrasonic pulse velocity values is not accurate because the correlation between ultrasonic pulse velocity and compressive strength of concrete is not very strong because there are large number of parameters involved, which influence the pulse velocity greatly. However, if details of material and mix proportions adopted in the particular structure are available, then estimate of concrete strength can be made by establishing suitable correlation between the pulse velocity and the compressive strength of concrete specimens made with such material and mix proportions, under environmental conditions similar to that in the structure

Referenced Journals/Papers, Books, Handbooks, Guidelines and Codes:

1. IS-13311 (Part-1): 1992, First Reprint September 1996, UDC 666.972.620. 179.16, Non-Destructive Testing of Concrete –Methods of Test, Part-I, Ultrasonic Pulse Velocity, Bureau of Indian Standards, Manak Bhavan,9 Bahadur Shahzafar Marg New Delhi-110002

2. M.S. Shetty, Concrete Technology Theory and Practice, Seventh revised edition 2013 published by S. Chand & Company Pvt. Ltd., 7361, Ram Nagar, New Delhi-110055

3. International Atomic Energy Agency, Vienna, 2002, Guidebook on non-destructive testing of concrete structures, Printed by the IAEA in Austria September 2002

4. Mr. Teke Sudhakar. S., Research Scholar, Civil Engineering Deptt. I.C.R.E, Gargoti-416209,Dist-Kolhapur, Maharastra-India, Health Assessment of Reinforced Concrete Structures - A Case Study, IOSR Journal of Mechanical & Civil Engineering (IOSR-JMCE) ISSN: 2278-1684, PP: 37-42 5. IS: 456 (2000), Fourth Revision, 10th Reprint Aprial 2007, Indian Standard Code of Practice for Plane Reinforced Concrete Structures, Bureau of Indian Standards, Manak Bhavan,9 Bahadur Shahzafar Marg New Delhi-110002

6. SP.23.1982 (based on Indian Standard), Handbook of Concrete Mixes, Bureau of Indian Standards, Manak Bhavan,9 Bahadur Shahzafar Marg New Delhi-110002

7. IS: 516.1959, Eighteenth Reprint June 2006 (Incorporating Amendment No 1 and Including Amendment No 2) UDC 666.97. 620 17, Methods of tests for strength of concrete, Bureau of Indian Standards, Manak Bhavan,9 Bahadur Shahzafar Marg New Delhi-110002

8. J. Helal, M. Sofi, P. Mendis. University of Melbourne, Australia, Non-Destructive Testing of Concrete: A Review of Methods, Special Issue: Electronic Journal of Structural Engineering 14(1) 2015

9. Muhammad Azhar Saleem, Zahid Ahmad Siddiqi, Mubashir Aziz and Safeer Abbas, Ultrasonic Pulse Velocity and Rebound Hammer Testing for Nondestructive Evaluation of Existing Concrete Structure, Pak. J. Engg. & Appl. Sci. Vol. 18 January, 2016 (p. 89–97)

10. Prof. Dr. Bayan S. Al-Nu'man , Bestoon R. Aziz , Sabr A. Abdulla , Sirwan E. Khaleel Compressive Strength Formula for Concrete using Ultrasonic Pulse Velocity, International Journal of Engineering Trends and Technology (IJETT) – Volume 26 Number 1- August 2015

11. Swati J. Sonule, Archana A. Uparwat and Dinesh W. Gawatre., Structural Investigation of Concrete Using NDT, Volume : 2 | Issue : 10 | October 2013 • ISSN No 2277 – 8179

12. Francesco NUCERA and Raffaele PUCINOTTI, Destructive and Non-destructive Testing on Reinforced Concrete Structures: The Case Study of the Museum of Magna Graecia in Reggio Calabria, Department of Mechanics and Materials, Mediterranean University of Reggio Calabria, Italy

13. Author N.R. Patil Assistant Professor Bharati Vidyapeeth University I College of Engineering, Dhankawadi, Pune-43.andJ.R. Patil Professor D. Y. Patil College of Engineering Akurdi, Pune-44, Non-destructive Testing (NDT) Advantages and Limitations, SRES College of Engineering, Kopargaon, Maharashtra - 423 603

14. S. Krishna Rao (Research Scholar), Civil Engineering Department, JNTUH, Hyderabad, Telangana, India, Relationship between Ultrasonic Pulse Velocity and Compressive Strength for Roller Compacted Concrete containing GGBS" International Journal of Applied Engineering Research ISSN 0973-4562 Volume 11

15. Ministry of railway, Research Design and Standards Organization Lucknow-226021, Guidelines of Non-destructive Testing of Bridges, BS - 103 August, 2009

16. James R. Clifton and Nicholas J. Carino National Bureau of Standards, Washington, DC 20234, Nondestructive Evaluation Methods for Quality Acceptance of Installed Building Materials, Journal Research of the National Bureau of Standards Vol. 87, No. 5, September-October 1982

17. Duna Samson (Senior Lecturer) and Omoniyi, Tope Moses (Graduate Student), Civil Engineering Department, Abubakar Tafawa Balewa University, Nigeria, Correlation between Non-Destructive Testing (NDT) and Destructive Testing (DT) of Compressive Strength of Concrete, International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org Volume 3 Issue 9 || September 2014 || PP.12-17 www.ijesi.org 12 |

18. Hassan R. Hajjeh, Civil Engineering Department, Faculty of Engineering Technology Al-Balqa' Applied University, Amman – Jordan, h_hajjeh@Yahoo.com, Correlation between Destructive and Non-Destructive Strengths of Concrete Cubes Using Regression Analysis, Contemporary Engineering Sciences, Vol. 5, 2012, no. 10, 493 – 509.

19. B. Tumendemberel, Ts. Baigalimaa, Centre of NDT, Mongolian University of Science and Technology e-mail: tumen_must@yahoo.com, baigal5@yahoo.com, Research into the correlation between the concrete strength and UPV values.

20. Cengiz Kurtulus, Kocaeli University, Engineering Faculty, Department of Geophysics, Izmit-Kocaeli, Turkey. and Ali Bozkurt, ABM Engineering Co., Izmit-Kocaeli, Turkey, Accepted 20 June, 2011, Determination of concrete compressive strength of the structures in Istanbul and Izmit Cities (Turkey) by combination of destructive and non-destructive methods, International Journal of the Physical Sciences Vol. 6(16), pp. 4044-4047, 18 August, 2011, Available online at http://www.academicjournals.org/IJPS, ISSN 1992 - 1950 ©2011 Academic Journals

21. A. M. Neville and J.J. Brooks, Concrete Technology, Eleventh Impression 2012 published by Dorling Kindersley (India) Pvt. Ltd., licensees of Pearson Education in South Asia, Head office: 7th Floor, Knowledge Boulevard, A-8(A). Sector-62, Noida-201309, U.P. India.