
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 260

Designing an Optimized and Reliable Algorithm for the Automation of

Problem Report State Flow

Prathamesh Sanjay Zingade1, Saba Fareen N S2

1Department of Electronics and Communication Engineering, RV College of Engineering Banglore,
Karnataka, India

2Assistant Professor, Department of Electronics and Communication Engineering, RV College of Engineering
Banglore, Karnataka, India

---***--
Abstract - Software designing, and maintenance is one of
the major concerns in IT companies. Problem Report (PR) is
the process being followed to track data and the problems
associated with it while the product is being released. PR gets
attached to the failed testcases of the scripts being written for
testing. Once PR get attached it needs to undergo various
states until the problem is being fixed. Thus Automating the
problem report state flow helps the organisation to speed up
the process and thereby achieving better efficiency. This work
reviews the approaches being used for automating the PR
state flow which in turn acts as scheduler.

Key Words: Problem Report (PR), Automation tool,
python, Application Program Interface (API), CRON.

1. INTRODUCTION

This Finding the issues and fixing them is the most
expensive activity in software development [1]. Considering
all the size, time, cost, complexity, and pressures - predicting
and tracking quality becomes a major challenge in software
development projects. Products like Routers and switches
need logical software performance which would be
developed by software developers. Before proceeding to the
deployment of these software logics into hardware, testing
the scripts plays an important role. Testing and debugging
software is an important part of software companies used
for make sure the correctness of reliability and functionality
of software systems; but software testing is also a resource
intensive activity which accounts more than half of total
software development costs [2] and even more for ensuring
the safety of critical software systems. It is essential to keep
track of scripts being tested.

Various techniques are being used to track the
debug history. One of the technique is using Git. Git is one of
the distributed version system which helps to track the logs,
changes in data and the defects which can be extracted easily
[3]. As thousands of scripts will be tested it becomes difficult
to handle the logs using open source software. Thus debugs
and the problems associated with the scripts are handled
using one of the tracking system developed in the
organisation called as PR.

Organizing problem reports being discovered would
provide tracking details and the history of all the problems

and thus it is being treated as one of the most efficient way of
dealing with software issues. It becomes essential to keep
track of logs related to the exchange of information between
testers and developers along with constant monitoring of
issues until the resolution is being fixed and validated.

Most organizations maintain a database which could be
local to the project or team or specific section of
organization. All details regarding defects found when
testing fails, till the failed script passes such activities are
recorded as reports in those databases in a predefined
format. The database has the facilities to keep track of the
problem reports. It provides major options such as:

 Allows to Access the details of the problems or
issues being attached to the failed scripts which has
to be resolved

 Helps to Create, query, edit and check thousands of
PR being available on the database

 Helps in Fetching the details of logs, owners of PR,
scopes etc.

 Allows to Track the state of PR.

To provide all these options and facilities the database
being maintained, the state of PR can be monitored by
fetching the data from it. Scripts written by test engineers
needs to be tested in some kind of automation tool which
provides user friendly interface to register, run and validate
the test cases.

The scripts running automation tool used is the next-gen
test execution harness designed to cater to all workflow. It
provides user interface to submit and run the scripts. It
comprises an advanced registry for organizing scripts, a
flexible resource set management system and a powerful
scheduler that manages the queueing and execution of
scripts on the various resource sets. It supports multiple
automation frameworks and offers standard services such as
scheduling, monitoring, result viewing, result analysis,
troubleshooting of automation jobs, and provides the grid
view of script profile search to show the pass percentage of
the script profile.

The scripts running tool is used to submit the scripts
written by various test engineers and check if it runs or not.
The automation comes into consideration when the scripts

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 261

fail. And tracking begins when PR gets attached to the failed
scripts.

2. PROBLEM REPORT

 A Problem report is a database recorded in the PR system,
represented by a number, and can correspond to: a bug, a
feature request, tracking data for releases, a problem
condition-such as a build break. One such example of a PR id
is: PR: 1234, PR: 8976-2 (PR id with scope=2.)

 PR captures data related to: who found the condition
(submitter), the issue (what is the bug, enhancement request
or condition being tracked), the release in which this
condition needs to be fixed (scopes) and who shall be
responsible for fixing this problem/condition (developer.)
Once the developer gets assigned a particular PR the
information about the fix for the condition (how, when,
where it would get fixed) and any other communication or
relevant data related to the PR (including any workarounds)
would also get captured.

 Scope - A single problem can exist in multiple releases,
and the problem needs to be fixed in the releases being
affected. A scope is a set of fields in a PR that correspond to
data that might be unique to a particular release of a product.
A PR can have multiple scopes, one for each release affected
by the PR. Each scope would have its own State field; hence
PRs would become multi-state when scopes were being
introduced in the PR system. A PR scope is represented as
PR-scope, for example: 12345-3.

 The PR gets created by various teams depending upon the
issues. These PR gets attached to the failed testcases which
indicates that Testcase is failed and hence the code needs to
be fixed. This tracking of code fix would be carried out using
the PR state flow. Once the PR is attached it would undergo
various states until the code gets fixed and validated. Once
the testcases which was failed gets passed the PR can be
closed, which indicates that the problem is being fixed and
state of PR can be changed to closed state.

3. PROBLEM REPORT STATES

Fig-1: PR states

 As shown in Fig 1 PR undergoes into different states. The
details of each state and respective roles being responsible to
handle the PR is given in Fig 2.

 The Major state to be considered for automation is “Verify
resolution state”, whenever the state of PR changes to verify
resolution state it indicates that the problem is being fixed
and can be validated. This is where automation comes into
play where automatically all the scripts image details have to

be fetched and the it has to be re-run and checked whether
the problem is fixed or not.

Fig-2: PR states and responsible role

 The verify resolution state indicates that: In most of the
cases, scopes must undergo a transition through this state
when it needs to get resolved and ready to be validated. This
applies whether or not the issue is being fixed, as described
below. Resolution, validation, or acceptance is usually
expected to be done by the submitter of the issue. A
resolution must be recorded in the scope (in Resolution and
Resolution-Reason fields) before or at the time when the
scope enters into this state. If the issue was resolved with the
status being recorded as fixed, the submitter of the PR/scope
needs to perform activities which are required to re-verify
that the issue is indeed fixed in the Planned-Release for the
scope.

 Otherwise, for a non-fixed resolution, the submitter
confirms whether they accept or reject the resolution. It also
includes that when the PR is resolved as a duplicate or
mistaken PR, the issue would not be reproducible, or it would
be decided that the issue will not be fixed in that release for a
particular business reason.

 In current work system, If the problem is fixed, the state
of PR is manually set to ‘resolution-accepted’, and the system
automatically makes a transition of its State to ’closed’ which
indicates that the problem is fixed. Alternatively, if problem is
not fixed and resolution is not accepted then state is set to
‘resolution-not- acceptable’ to disagree with the resolution
which indicates that the issue is not fixed and PR has to be
opened and assigned back to the developer to make changes
and provide new solution.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 262

4. SYSTEM DEVELOPMENT

 In most of the organizations, Problems or bugs related to
software are fixed and the fix is tested continuously on daily
basis. Fixing the problems requires attention of the
developer. Once the problem is fixed by the developer human
resource is required to test the solution and provide the
feedback hence, to reduce the human interaction and provide
an automation various designs were considered. As
mentioned in [4] an automotive domain score card can be
implemented to be used in small organization. As explained
in [3] open source Git can be used to track and update the
details which less confidential. As PR database and scripts
running tool interactions are of major concern thus the final
design would consist of an automation tool which would be
developed using python as a scripting language.

 5. METHODOLOGY

 As shown in Fig 3 Python script would be developed in
each step having a particular definition. The details of the
steps being followed are as stated below:

1. Getting PR list: As discussed PR list can be fetched from
different ways depending upon the requirement. Final design
is made which will fetch the PR list from the given build. The
steps being followed are detailed below-

 Branch would be considered as a starting point of
the code. PR would be fixed on daily basis which are
then stored in the daily folders with date on which it
was addressed (example: 20201115 in the format of
YYYYMMDD), these date folders are called as Target
builds. All the PR fixed in a day would be stored on
the file PRLIST.txt in their respective target build
folders.

 The file would have software and Linux PR amongst
which only software PR is considered. These are
software PR. This file is read using ‘cat’ command.

 Once PR the is fetched it would be considered for the
further processing

 After the text edit has been completed, the paper is ready
for the template. Duplicate the template file by using the Save
As command and use the naming convention prescribed by
your conference for the name of your paper. In this newly
created file, highlight all of the contents and import your
prepared text file. You are now ready to style your paper.

Fig-3: Tasks flowchart

 2. Filtering PR list: Once the PR is fetched and software PR is
considered, there are few conditions applied before giving
the final PR list which is considered for the final process.
This is done as follows-

 PR associated in different fields, among those PR,
details of PR which are associated with the ‘scripts
running tool’ is fetched. This is done by calling the
query problem report API. This will give filtered list
of PR which are associated with it

 Once ‘scripts running tool’ associated PR is filtered,
the state of these PR is checked. PR can be validated
only when the issue is fixed hence state of PR has to
be ‘Verify resolution’. Filtration would be carried
out again if the PR are not in the ‘Verify resolution
state’.

 Details of Planned release and Target is checked
which has to be matched with the build from which
PR list is taken as explained in step 1.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 263

 This will be the final list of PR which would be used
for the next process.

3. Collecting inputs: This is the part of the tool where all the
data related to respective PR is fetched which in turn is used
to submit to run and then to validate the testcases. To fetch
the details of the script, script exec id of that PR is fetched
using query PR API. Script exec summary API will give all the
details for given script exec id.

Scripts can be virtual based or physical based, as
part of the testing only virtual based PR is considered, hence
details are collected only if the script is virtual. This data is
also fetched from the same get summary API. If it is virtual
then inputs like- script profile, image, failed test case etc. are
collected.

4. Getting image: Image serves as a major part while
submitting run job. This has to be accurate. Following steps
are followed to get the actual image of scripts

 Firstly all the images are checked from the ship
folder of that build

 Among those only vmdk and iso (indicates virtual
images) images are considered and rest is filtered
out because only virtual scripts are considered.

 Using get script exec summary API, the previous
image associated with the script is taken and
stored.

 The string is compared to check if that substring
image is present in ship folder images.

 If it exists then that image itself would be
considered for the process.

 Dictionary is updated which would have script exec
id: PR, Profile, Image, failed testcases.

5. Submitting scripts run job per PR: Dictionary items are
flipped such that details is per PR having PR as key. It would
have all the details such as scripts, testcase failed, images
associated with that PR. submission is done in the tool to run
the scripts per every PR i.e. For one PR one submission is
done hence number of submissions would be equal to the
number of PR. Loop option is enabled so that scripts would
run and validation would be carried out 2 times.
6. Checking submission state: State of submission is polled
every 5 minutes and checked if the submission is completed
or not. This is done to ensure that the further process begins
only after completion of run.
7. Validating failed testcases: All the scripts would run with
some testcases. Hence validation depends on the test case,
thus it is essential to check those test cases that are getting
passed in the run. This is done as follows:

 Test case result is compared and checked if it
Passes or Fails. Once the scripts run, each
testcase is compared with the stored testcase.

 If the name matches then the result is checked. If it
gets passes through all the loop runs which in
turn indicates that the issue is fixed and PR can

be closed. Else it indicates that PR has an issue
and needs to be assigned back to the developer.

6. IMPLEMENTATION

Methods and functions are written and called in the
main function as considering the logic explained in
methodology. Each function call is implemented with an idea
right from getting PR list till the submission of scripts and
then the failed test cases are validated, informing the owner.

This helps the engineers to automatically check the
result of submission instead of wasting time to submit all the
scripts and waiting for the result. Each function call takes the
various inputs depending upon the requirement. The logging
module is also implemented to keep track of the run. Most of
the functions fetch the data from various API and commands
which would run and give the output. The python script can
be run using CRON, as this job needs to be run every 24
hours. The final implementation is done till the owner of the
PR gets informed about the submission details and result.

7. RESULTS

Fig-4: Notification result

Logger output: The data being tracked, and the code gets

logged into the logger file. The logger file consists of step by
step details of results being obtained. As the implementation
is done in a way wherein it has to fetch many details and
take many decisions based on the data, it is important to log
all the data. The sequence of steps being followed are as
given below.

 PR list is taken from the build
 PR associated with submission tool is checked and

others are filtered out
 All virtual images are collected as logged
 PR state is checked, and filtration would be done
 Script exec details are fetched, and image details are

updated
 Scripts are submitted to run per PR
 Failed testcases are validated and notification is

sent

Final mail is sent to the owner of PR saying that PR is
validated, testcases are passed and state of PR can be
changed to closed state. The sample format is shown in the
Fig 4 The mail consists of the details regarding owner of PR,
PR number, submission id and the result. A link to the
submission would be provided to the owner in order to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 264

validate if the testing is done or not, depending on which the
state of PR can be changed to closed state.

8. CONCLUSION

The major concern with IT industries was to track
the problems, issues generated while running the scripts, as
the PR gets attached in order to maintain the track.
Whenever the problem gets solved by the developers the test
engineers have to test those scripts again. To provide
automation in this field and to reduce the work of engineers
a detailed review of designs being followed so far was
carried out and based these ideas a novel approach is
suggested for the development of automation of PR state
flow.

Python based tool was developed to fetch the details
and to have the decisions depending upon which submission
was done. Testcases are validated automatically and owner
is informed about the result. The details of implementation
and the results obtained are also reviewed in this paper.

Such automations are deployed in the tool which

will invoke the Cron every day and automatically does the
job of validation, this in turn helps the engineers working in
almost all the teams not worry about the scripts which they
have fixed as it is now handled by the tool “Automation of
Problem Report state flow”.

REFERENCES

[1] D. A. Gromova et al. “Raising the Quality of Bug Reports

by Predicting Software Defect Indicators”. In: 2019 IEEE
19th International Conference on Software Quality,
Reliability and Security Companion (QRS-C). 2019, pp.
198–204.

[2] A. Hazeyama and M. Hanawa. “A problem report
management system for software maintenance”. In:
IEEE SMC’99 Conference Proceedings. 1999 IEEE
International Conference on Systems, Man, and
Cybernetics (Cat. No.99CH37028). Vol. 1. 1999, 1019–
1024 vol.1.

[3] P. S. Kochhar et al. “Understanding the Role of Reporting
in Work Item Tracking Systems for Software
Development: An Industrial Case Study”. In: 2018 IEEE
International Conference on Software Maintenance and
Evolution (ICSME). 2018, pp. 605–614.

[4] R. Malhotra and L. Bahl. “A defect tracking tool for open
source software”. In: 2017 2nd International Conference
for Convergence in Technology (I2CT). 2017, pp. 901–
905.

[5] R. Malhotra et al. “Defect Collection and Reporting
System for Git based Open Source Software”. In: 2014
International Conference on Data Mining and Intelligent
Computing (ICDMIC). 2014, pp. 1–7.

[6] T. Merten et al. “Software Feature Request Detection in
Issue Tracking Systems”. In: 2016 IEEE 24th
International Requirements Engineering Conference
(RE). 2016, pp. 166–175.

[7] R. Rana, T. Lagercrantz, and M. Staron. “Building an
Effective Software Issues Scorecard: An Action Research
Report from the Automotive Domain”. In: 2018 IEEE

International Conference on Software Architecture
Companion (ICSA-C). 2018, pp. 136–143.

[8] Huaiqing Wang and Chen Wang. “Open Source software
adoption: A status report”. In: Software, IEEE 18 (Apr.
2001), pp. 90–95. doi: 10.1109/52.9147

