
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2403

Application for Grammar Checking and Correction

Yash Thakare1, Tejas Sridhar2, Navanit Srisangkar3, Pankaj Vanwari4

1,2,3Student, Dept. of Computer Engineering, Vidyalankar Institute of Technology, Mumbai, India
4Professor, Dept. of Computer Engineering, Vidyalankar Institute of Technology, Mumbai, India

---***--
Abstract - This paper identifies and examines the key
principles underlying building a state-of-the-art
grammatical error correction system. Techniques that are
used include rule-based, syntax-based, statistical-based,
classification and neural networks. This paper presents
previous works of Grammatical Error Correction or
Detection systems, challenges related to these systems and
at last suggests future directions. We also present a possible
scheme for the classification of grammar errors. Among the
most observations, we found that efficient and robust
grammar checking tools are scarce for real-time
applications. Natural Language consists of the many
sentences which are meaningful linguistic units involving
one or more words linked together under a collection of
predefined rules called 'grammar'. Grammar checking may
be a fundamental task within the formal world that
validates sentences syntactically and semantically.

Key Words: Natural Language Processing;
Computational Linguistic; Grammar Formalism;
Grammar Checker; Writing Errors; Grammatical Error
Detection, Grammar Checking.

1. INTRODUCTION

Natural Language Processing (NLP) refers to processing
human languages automatically using computational
algorithms. The task of Grammatical Error Correction
(GEC)[1] has gained popularity within the area of NLP and
different techniques are employed to make GEC systems. A
GEC system may be valuable in various ways like using it
within an application to test writings for grammatical
mistakes. This paper presents previous GEC systems using
multiple approaches. While writing text in their second or
foreign language, people might make errors. Therefore, it's
essential to be able to detect these grammar errors and
proper them similarly. Grammar checking by a person
becomes inconvenient sometimes like when human
resources are limited, the scale of the document is large or
the grammar checking is to be done daily. Therefore, it
would be beneficial to automate the method of grammar
checking. A grammar checking tool can provide automatic
detection and correction of any faulty, unconventional or
controversial usage of the underlying grammar. Grammar
is the study of important elements in language and a
collection of rules that make it coherent. Words are
grammatical basic units that combine to make a sentence
and collection of sentences complete the language. It's a
touch easier for personalities to follow rules of the native
language as they are responsive to it since the infant

phase. But it's areplacement and exciting challenge for
language technology & applied CL to validate grammatical
correctness of any language for computers. To validate
grammatical mistakes by humans is additionally one in
every of the challenging tasks. While grammar checker
tools are developed to date for several worldwide
languages, it's relatively new in Indian languages. So, there
is scope to develop grammar checkers for Indian
languages. In this paper, we identify key principles for
building a strong grammatical error correction system and
show their importance within the context of the shared
task. We do that by analyzing and evaluating it along
several dimensions: choice of learning algorithm; choice of
coaching data; model adaptation to the mistakes made by
the writers; and therefore, the use of linguistic knowledge.
For every dimension, several implementations are
compared, including, when possible, approaches chosen
by other teams. We report a scientific review on grammar
checking in English. Systematic reviews are undertaken to
sum up the present approaches, identifying their
limitations, suggesting further research directions, and to
produce a background for brand new research actions.

The errors[2] can be categorized into following types:

1. Structure Error

2. Punctuation Error

3. Spelling Error

4. Programming Error

5. Runtime Error

Following are the common grammatical mistakes that are
performed by the users[3]:

1. Punctuational mistakes w.r.t punctuation markers viz.
Comma, hyphen, punctuation.

2. Constituents' Agreement mistakes.

 a. Noun-verb agreement

 b. Gender, number, case, person agreement

 c. Noun-adjective agreement

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2404

 d. Agreement in phrases (noun phrase, verb phrase)

 e. Clause level errors (Clausal constructions, focus)

3. modifier.

4. Vague pronominal reference.

5. Inappropriate vocabulary choice (incorrect word sense).

6. Lack of parallel structure (diversified structures under
the same theme).

7. Sentence sprawl (sentence linking-semantic flow,
elaboration vs. summarization).

8. Tense, Aspect, Modality agreement.

2. LITERATURE SURVEY

We have surveyed various papers which have listed the
approaches used for grammar checking and correction and
have discussed the same below. This would help one in
gaining a comprehensive idea about the approaches and
methodologies used and thereby enable them to develop
an efficient solution. Additionally, we have also surveyed
tools for NLP operations like Stanford CoreNLP[4],
NLTK[5] along with their features.

Broadly, three grammar checking approaches are used,
namely statistical, rule-based and hybrid grammar
checkers.

A) Statistical Grammar Checker[6]

B) Rule-based grammar Checker[6]

C) Hybrid Grammar Checker[7]

Following are the steps involved in grammatical error
correction:

a. Tokenization

Tokenization[8] is the start of text analytics. The method of
breaking down a text paragraph into smaller chunks like
words or sentences is named Tokenization. Token may be a
single entity that's building blocks for a sentence or
paragraph. Thus, tokenization will be defined as the
chopping of paragraphs to sentences and sentences to
words.

b. POS Tagging

The primary target of Part-of-Speech (POS)[8] tagging is to
spot the grammatical group of the given word. Whether it's
a NOUN, PRONOUN, ADJECTIVE, VERB, ADVERBS, etc.
supported the context. POS Tagging looks for relationships
within the sentence and assigns a corresponding tag to the
word. POS Tagging helps in the parsing of a sentence and

determination of whether a sentence is grammatically
correct or not.

c. Dependencies and Dependency Grammar

Phrase structure grammar is about how words and
sequences of words combine to create constituents. A
definite and complementary approach, dependency
grammar, focusses instead on how words relate to other
words. Dependency[9] may be a binary asymmetric
relation that holds between a head and its dependents. The
top of a sentence is sometimes taken to be the tensed verb,
and each other word is either connected to the sentence
head or connects to that through a path of dependencies.

A dependency representation may be a labeled directed
graph, where the nodes are the lexical items and therefore
the labeled arcs represent dependency relations from
heads to dependents. The following figure illustrates a
dependency graph, where arrows point from heads to their
dependents.

d. Dependency Parsing

A dependency parser[10] analyses the grammatical
structure of a sentence by establishing dependency
through relationships between words. A sentence is parsed
by choosing for every word what other word is it a
dependent of. It creates a dependency
structure/dependency treebank which may be a tree-like
structure having a head/governor and its children called
dependents. Here, a choice must be taken on which word to
pick as head and which to pick as a dependent.

The figure below shows a dependency parse of a brief
sentence. The arrow from the word moving to the word
faster indicates that faster modifies moving, and therefore
the label ‘advmod’ assigned to the arrow describes the
precise nature of the dependency.

The most commonly used method for dependency parsing
is described below:

Transition Based Dependency Parsing[10]

It is a straightforward type of greedy discriminative
dependency parser. The parser does a sequence of bottom-
up actions. It is just like a shift-reduce parser, but during
this the reduce actions are specialized to form

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2405

dependencies with the top on left or right. This parser
builds a parse by performing a linear-time scan over the
words of a sentence. At every step, it maintains a partial
parse, a stack of words that are currently being processed,
and a buffer of words yet to be processed.

The parser continues to use transitions to its state until its
buffer is empty and therefore the dependency graph is
completed. The initial state is to own all of the words so as
on the buffer, with the only dummy 'Root; node on the
stack. The subsequent transitions may be applied:

LEFT-ARC: marks the second item on the stack as a
dependent of the primary item, and removes the second
item from the stack (if the stack contains a minimum of two
items).

RIGHT-ARC: marks the primary item on the stack as a
dependent of the second item, and removes the primary
item from the stack (if the stack contains a minimum of two
items).

SHIFT: removes a word from the buffer and pushes it onto
the stack (if the buffer isn't empty).

With just these three varieties of transitions, a parser can
generate any projective dependency parse. Note that for a
typed dependency parser, with each transition we must
also specify the kind of the connection between the top and
therefore the dependent being describer. The parser
decides among transitions at each state employing a neural
network classifier. Distributed representations (dense,
continuous vector representations) of the parser's current
state are provided as inputs to the current classifier, which
then chooses among the possible transitions to form next.

These representations describe various features of the
present stack and buffer contents.

In short, the parser has:

A stack α, written with top to the right which starts with
the root symbol.

A buffer β, written with top to the left which starts with the
input sentence.

A set of dependency arcs A which starts empty.

A set of actions.

Algorithm:

Configuration: (S, B, A) [S = Stack, B = Buffer, A = Arcs]

Initial: ([], [0, 1, . . . , n],) Terminal: ([0], [], A)

Shift: (S, i|B, A) ⇒ (S|i, B, A)

Right-Arc(k): (S|i|j, B, A) ⇒ (S|i, B, A ∪)

Left-Arc(k): (S|i|j, B, A) ⇒ (S|j, B, A ∪) i != 0

3. PROPOSED SYSTEM

The main aim here is to develop an application that scans
a document, extracts the text using image processing,
checks for grammatical errors present within the
document and displays the output to them. In short, this
project helps the user find grammatical errors during a
paper document rather than typing the document on
modern available tools. This project fulfills the subsequent
activities:

 The application maintains a live camera scan
through the mobile device for the user to scan the
document in question.

 Text Extraction of the text present within the
document is extracted as strings to perform
grammar checking on.

 Grammar Checking[11] is performed on the
extracted text and errors are identified and
corrections are suggested.

 Errors are shown to the user within the
application itself for the user to spot.

Thus, the proposed system follows an easy methodology of
developing an android application that scans the paper
document present with the user, uses a text extraction
technique to extract text, performs checking for
grammatical errors within the document so displaying the
errors to the user.

A basic workflow system for this project is as shown
below:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2406

4. METHODOLOGY

The system is implemented in various stages as follows:

1. Mobile Application:

The mobile application uses the user's mobile camera to
scan the paper document in streams of images. The mobile
application itself is implemented using Android Studio
which supports android devices. With the assistance of
Camera Source provided by android studio, the camera of
the user is accessed and live scanning takes place.

2. Image Processing:

In this module, text present within the document is
extracted using the Google Vision present in the android
studio which extracts the text present within the
document.

3. NLP:

In this module, the first preprocessing is finished on the
extracted text using the sentence tokenizer which
classifies every sentence within the documents in tokens.
These individual tokens are then parsed using GingerIt
parser and checked for grammatical errors and also
perform appropriate corrections.

4. Displaying Errors within the document:

After the successful identification of errors present within
the document, the errors are shown to the user within the
application within the style of a text document.

Following are the two components of the system working
in combination to produce the desired output:

1. Mobile Application:

A simple user-friendly mobile application with camera
access is employed by the user to scan the document or
paragraph which is then sent to a python flask server for
grammatical error correction. Together with camera
access, the application also performs text extraction using
Google Cloud Vision which extracts text and therefore the
extra is distributed for grammatical correction. The
application also shows corrected output together with
errors for the user to look at using a text document where
errors are highlighted.

2. Flask Server:

A simple server that receives text from the mobile
application and performs grammatical error correction on
that. The corrected document is then stored on Flask
server from where the mobile application retrieves the
corrected document for display.

Figure 1: Text Recognition using Google Cloud Vision

Figure 2: Corrected Output Document

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2407

5. CONCLUSIONS

Grammar checking is one area of natural language
processing (NLP) the applications of which range from
proofreading to learning a full language. The tremendous
amount of labor has been done in the development of
grammar checking tools but quite a few efforts are made
to survey the prevailing literature. Thus, we have
comprehensively studied and analyzed various grammar
checking approaches, methodologies together with key
concepts also keeping in mind the accuracy provided by
the approach. The approaches will be mainly classified
into three categories namely (1) Rule-based technique, (2)
Machine Learning-based technique, and (3) Hybrid
technique. For learning, rule-based approaches are best
suited but rule designing could be a tedious task. This
tediousness is alleviated by Machine learning but it
depends on the kind and size of the corpus used. The
simplest of both these techniques are combined in the
Hybrid technique.

An error classification scheme is additionally presented
during this paper which helps in the identification of
various varieties of errors. Following are the tasks within
which this classification scheme would help researchers
and developers : (1) As most frequent errors are
identified, there would be proper clarity on what sort of
errors should be targeted for correction, (2) Identification
of the extent of error would help in determining what
length of the text should be scrutinized to detect any error,
(3) Identification of the reason for the invalid text would
greatly help in devising an answer to put in writing valid
test. The task of grammar checking gets simplified by all
this.

Our observations supported the detailed review of
assorted approaches are as follows: (1) None of the
prevailing approaches can completely detect every kind of
errors efficiently, (2) Most of the prevailing tools aren't
available for research or public use, (3) The experimental
data utilized in all approaches is different, so it's difficult
to match the results. (4) Most of the approaches address
syntax errors and other errors at the word level but very
efforts are made to detect errors at the sentence level and
therefore the semantic level. (5) The detection and
correction of run-on sentences is one more untouched
research area.

All the tools that were analyzed require a document either
in word or pdf format to be uploaded to efficiently
perform grammar checking and correction. On the
opposite hand, our proposed application performs real-
time grammar checking and correction by taking input as
a picture. This can be greatly helpful to a plethora of
individuals, for instance, an author can effortlessly
proofread a page and check for errors and also get the
corrected document through the application rather than
investing precious time in scanning the document.

6. FUTURE SCOPE

Currently, the proposed system focuses on grammatical
error correction on normal printed text. A system which
performs grammatical error correction on the
handwritten text can be developed and implemented. This
may be achieved by developing a model that extracts
handwritten text and converts it to normal printed text.
Techniques like Paragraph Segmentation[12], Line
Segmentation[13], Word Segmentation[13] are often
accustomed to segment handwritten text and algorithms
like Word Beam Search[14] or Vanilla Beam Search are
often used alongside Recurrent Neural
Networks(RNN)[15] to spot the sequence of words.

Additionally, this technique is often further evolved by
performing correction on answer papers for various
subjects as per the teacher's requirement. it's possible to
focus on the important keywords present within the
answers to assist teachers grade the answers.

It is also possible to implement the application in an
exceedingly more visually appealing way using augmented
reality where the errors are highlighted on the camera
screen itself for the users to work out in real-time. this can
be possible using the concept of markers wherein every
sentence incorporates a marker placed with them and said
marker helps identify which sentence is wrong within the
image and thus to be highlighted.

REFERENCES

[1] Alla Rozovskaya, Dan Roth, “Building a State-of-the-
Art Grammatical Error Correction System”,
Transactions of the Association for Computational
Linguistics, Volume 2, pp 419-434, 2014.

[2] Madhvi Soni, Jitendra Singh Thakur, “A Systematic
Review of Automated Grammar Checking in English
Language”, arXiv:1804.00540 [cs.CL], 2018.

[3] Nivedita S. Bhirud, R.P. Bhavsar, B.V. Pawar,
“Grammar Checkers For Natural Languages: A
Review”, International Journal on Natural Language
Computing (IJNLC) Vol. 6, No.4, 2017.

[4] Manning, Christopher D., Surdeanu, Mihai, Bauer,
John, Finkel, Jenny, Bethard, Steven J., and McClosky,
David. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit in Proceedings of 52nd Annual
Meeting of the Association for Computational
Linguistics: System Demonstrations, pp. 55-60.

[5] Steven Bird, Edward Loper NLTK, “The Natural
Language Toolkit”, Proceedings of the ACL Interactive
Poster and Demonstration Sessions, pp-214-217,2004.

https://www.aclweb.org/anthology/volumes/Q14-1/
https://www.aclweb.org/anthology/volumes/Q14-1/
http://nlp.stanford.edu/pubs/StanfordCoreNlp2014.pdf
http://nlp.stanford.edu/pubs/StanfordCoreNlp2014.pdf
https://www.aclweb.org/anthology/volumes/P04-3/
https://www.aclweb.org/anthology/volumes/P04-3/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2408

[6] G. Krishna Chaitanya and P. Bhattacharyya,
“Grammatical Error Correction”, Indian Institute of
Bombay, 2017.

[7] Roman Grundkiewicz, Marcin Junczys-Dowmunt,
“Near Human-Level Performance in Grammatical
Error Correction with Hybrid Machine Translation”,
Proceedings of the 2018 Conference of the North
American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pp 284-290,
2018.

[8] Fouad Nasser A Al Omran, Christoph Treude,
“Choosing an NLP Library for Analyzing Software
Documentation: A Systematic Literature Review and a
Series of Experiments”, 2017 IEEE/ACM 14th
International Conference on Mining Software
Repositories (MSR), 2017.

[9] Marie-Catherine de Marneffe, Christopher D. Manning,
“Stanford typed Dependencies Manual”, The Stanford
Natural Language Processing Group,
http://nlp.stanford.edu/downloads/dependencies,
2008.

[10] Danqi Chen, Christopher D. Manning, “A Fast and
Accurate Dependency Parser using Neural Networks”
,Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing
(EMNLP),2014.

[11] Nora Madi, Hend S. Al-Khalifa, “Grammatical Error
Checking Systems: A Review of Approaches and
Emerging Directions”, 2018 Thirteenth International
Conference on Digital Information Management
(ICDIM), 2018.

[12] Sukhvir Kaur, P. S. Mann, Shivani Khurana, “Page
Segmentation in OCR System- A Review“, (IJCSIT)
International Journal of Computer Science and
Information Technologies, Vol. 4 (3) , 2013, 420-422,
2013.

[13] Gupta Mehula, Patel Ankitab, Dave Namrata, Goradia
Rahuld, Saurin Sheth, “Text-Based Image
Segmentation Methodology”, 2nd International
Conference on Innovations in Automation and
Mechatronics Engineering, ICIAME 2014, 2014.

[14] Harald Scheidl, Stefan Fiel, Robert Sablatnig, “Word
Beam Search: A Connectionist Temporal Classification
Decoding Algorithm“, 2018 16th International
Conference on Frontiers in Handwriting Recognition
(ICFHR), 2018.

[15] Alex Sherstinsky, “Fundamentals of Recurrent Neural
Network (RNN) and Long Short-Term Memory
(LSTM) Network”, arXiv:1808.03314 [cs.LG], 2018.

https://www.aclweb.org/anthology/volumes/N18-2/
https://www.aclweb.org/anthology/volumes/N18-2/
https://www.aclweb.org/anthology/volumes/N18-2/
https://www.aclweb.org/anthology/volumes/N18-2/
https://ieeexplore.ieee.org/xpl/conhome/7959735/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7959735/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7959735/proceeding
http://nlp.stanford.edu/downloads/dependencies
https://www.aclweb.org/anthology/volumes/D14-1/
https://www.aclweb.org/anthology/volumes/D14-1/
https://www.aclweb.org/anthology/volumes/D14-1/
https://ieeexplore.ieee.org/xpl/conhome/8843511/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8843511/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8843511/proceeding
https://ieeexplore.ieee.org/author/37086578527
https://ieeexplore.ieee.org/author/38244854200
https://ieeexplore.ieee.org/author/37270943200
https://ieeexplore.ieee.org/xpl/conhome/8563039/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8563039/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8563039/proceeding
https://arxiv.org/abs/1808.03314

