
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 06 | June 2020                 www.irjet.net                                                                     p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 2463 
 

Automation of Data Pipeline Creation in Apache Airflow 

Prakarsh Anand1, Anuj Jain2, Suma B3   

1Student, R V College of Engineering, Bengaluru, India 
2Employee, Bounceshare Pvt Ltd, Bengaluru, India 

3Professor, R V College of Engineering, Bengaluru, India 
-------------------------------------------------------------------------***------------------------------------------------------------------------ 
Abstract - A data pipeline is a series of data processing 
steps. Data pipelines consist of three key elements: a source, a 
processing step or steps, and a destination. They are scheduled 
at regular intervals using job executors. They are organised as 
a directed acyclic graph(DAG) containing a starting point and 
an endpoint in the DAG. When tasks are executed in sequential, 
parallel or any desired manner it gives out a meaningful 
outcome which is used for data analysis or data sciences. 
Today, data pipelines are being created using programming 
python scripts from scratch. Airflow provides a very useful user 
interface for monitoring of execution of the data pipelines as 
per schedule and requirement. 
 
The paper proposes an end to end UI solution from data 
pipeline creation to monitoring. It proposes to provide a state 
of art user experience. This allows non-technical users to 
leverage the advantages of data orchestration tools. The paper 
uses Airflow, an open-source data orchestration tool and a 
python module named “DAG-factory” to implement the 
proposed solution. Approximately 65 % of all the users of 
Airflow are data engineers and 97% of the data pipelines 
executed on Airflow are used for Data Processing(ETL). 
Therefore, the paper focuses on data processing users as its 
primary users to provide the best user experience. 
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1. INTRODUCTION  
 
To deal with scheduled job execution many data pipeline 
orchestration tools like Airflow have been developed. Their 
primary work is to create robust task inter-linkages in a 
data-pipeline and perform scheduled runs at a regular 
interval. Out of several orchestration tools, Airflow provides 
a lot of monitoring and customisation functionalities as GUI. 

 
Quoting Apache Airflow documentation - “Airflow is a 
platform created by community to programmatically author, 
schedule and monitor workflows”. Airflow provides features 
to monitor workflow progress and execute DAGs. It allows 
visualisations to check how a DAG execution time varies with 
an increase in data to be processed, to check if a task 
execution can be performed in parallel without any data 
dependency. It allows back-filling of data through scheduled 
DAG execution using DAG execution date and not the start 
date of DAG. These features have undoubtedly made it 
massively useful worldwide. 

1.1 Existing Systems 
 
Airflow became Top-Level Apache Software Foundation 
project in January 2019 and has been used by a lot of 
companies catering their need to perform different data 
orchestration easily and efficiently. Airflow also supports a 
lot of different formats of input allowing it to be used 
universally to process any kind of data stored or task to be 
executed. Creation of tasks needs an operator in general. 
Airflow supports different kinds of operators, hooks or 
sensors where each of them can be used to create a task to be 
executed in a workflow. Different data pipelines are created 
using the customised cross-linking of different tasks which 
may run in parallel or sequence as per specified task 
dependencies created to serve the purpose of DAG creation in 
a meaningful manner. Airflow also supports python operator 
which opens a whole lot of possibility of tasks to be created 
ranging from machine learning module execution to simple 
control statement execution. The usefulness of python 
operator in Airflow environment is because any data pipeline 
created is a python based configuration file which is read by 
Airflow’s python interpreters. Therefore, a python based 
configuration file can be used for any DAG creation. 
 

 
 

Figure 1 General Workflow of Airflow 

Airflow’s execution environment and the standard steps to 
process DAG creation and execution comprise the whole 
framework used to perform data orchestration. It has been 
widely in use by a lot of organisations but with a very 
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obvious lagging step of programmatical data pipeline 
creation. It leads to different complications like 
 
1. One needs to know python programming to relish 
the full potential of the variation of data pipelines that can be 
created and executed. 
 
2. The limited set of operators, sensors or hooks in 
contrast to rich functionalities provided by python has led to 
a lot of redundant and non-standardized codes across 
organisations. They generally are observed as different 
combinations of same task structures driven by mere syntax 
usage of operators defined by Airflow. 
 
3. Creation of different ways of solving the problem of 
repetitive code-based data pipeline creation using pre-
processing of different configuration files parsing. For 
example “.ini” extensions or “.yaml” extensions. 
 
4. If DAGs are being created by not looking after the 
code repeatability issue, it allows errors like no 
standardisation of codebase at least across organisation. 
Human error during implementation increases as the 
dependability on the way an individual gets his/her work 
done creeps in every time. Machine-based task creation 
allows code standardisation and removes human 
intervention reducing the errors of DAG creation to be 
negligible. But this doesn’t solve the code repeatability issue. 
This impacts the scalability of code and the organisation as a 
whole. 
  
5. The steps or creativity applied using the tools 
available to reduce code repeatability by organisations are 
generally organisation specific which caters to the needs of 
an organisation and solid documentation is needed to scale 
the organisation and code base efficiently. It also means any 
new user of the non-standard tool created by the 
organisation needs to learn it from scratch using the 
organisation resources and it can’t be used as a standard tool 
which doesn’t serve the purpose as per the analysis of this 
paper. 

 
1.2 Scope and Motivation 
 

With every addition of module in the python library, DAG 
creation becomes more efficient and its userbase scales 
massively increasing the use of Airflow in particular multiple 
folds. One such python module addition is “ DAG-factory “ 
which if used in full potential will open DAG creation and 
execution for non-technical people. This will allow them to 
work with data orchestration as efficiently as people who 
know python programming. The proposed methodology 
leverages the full potential of DAG factory python module 
which reads a YAML based configuration file and converts it 
into a python-based configuration file internally. This 
python-based configuration file is used by the Airflow 
execution environment to create and execute data pipelines. 

Always a YAML based configuration file readability and 
writability are far more generalised and easier than a 
python-based configuration file creation. It allows non-
python developers, common users of the data pipelining 
environment or any person who can understand 
configuration files to understand and write a configuration 
file which involves very less complexity as compared to 
python-based configuration files and thus has fewer chances 
of human error and increase in the user base of airflow as a 
data orchestration platform. This is the whole purpose of 
implementation of “DAG factory” module as an open-source 
module. It serves the purpose of an increase in the user base 
of open-source data pipeline execution environment Airflow. 
It also creates a potential extension of the usage of the 
module to completely change the way DAG creation has been 
looked and assumed by the world so far. It has given the 
potential to create an environment which may create the 
desired DAG on click of a button or a mere command-line 
execution. The paper describes an approach which may 
potentially change the world's notion of data pipeline 
creation from being a skilled person in required technology 
to merely using the UI to specify what you want to perform 
using the data pipeline and the resources to be used. 

 

 
Figure 2 Proposed Airflow Architecture Diagram 

 

2. METHODOLOGY 
 

Airflow defines DAG as a Python script, which represents 
the DAGs structure (tasks and their dependencies) as code in 
their official documentation. This has been interpreted as 
skilled users may generally create a python script to create 
data-pipelines. Airflow uses a python-based configuration file 
to interpret and create data pipelines accordingly to be 
scheduled to execute at regular interval. These python-based 
configuration files can be created through coding the python 
configuration file manually or using the DAG-factory module 
which parses a configuration file and converts it into a python 
based configuration file to be interpreted for DAG creation. 
The DAG-factory module only needs the source path of the 
configuration file to fetch the file content and parses it to 
create a python based configuration file. A configuration file 
can contain many DAG definitions where each section in the 
configuration file may be fetched as a different DAG 
definition. Here, the configuration file is the standard content 
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specified in different DAG sections having DAG properties like 
the inter-task dependencies, different task definitions with 
user-defined values. The creation of these configuration files 
may be done manually or through a python code which 
generates the configuration file as per user requirement 
specified as system arguments while execution. 

The python code uses the crux of the proposed solution to 
convert the DAG generation process to be easy such that it 
can be created by a non-technical person through execution 
of the python code with user required arguments. The 
solution proposes a general configuration file which contains 
template based declarations of all the global variables 
required to create a DAG. Templates based declaration of all 
the operators , sensors and hooks required to create a task, 
different task definition templates which may be directed as 
per the DAG generation specified by the user. The general 
YAML file contains and may be appended with several DAG 
templates following the principle of write once and read 
many times. People can add their own customised DAG 
templates in the general configuration YAML file .The python 
code reads and takes out the template from the general 
configuration file as per the DAG to be created specified by 
the user . It fills in the values required to define the DAG. The 
DAG definition is at last dumped into the YAML file to be used 
by the DAG factory module to create the data pipeline. 

 

Figure 3 Configurable DAG specific templates 

This process repeats without any human intervention 
whenever a DAG is generated creating a drastic change from 
the way people are used to code a python-based 
configuration file to an automated configuration file 
generation using standard parameters already specified in 
the general configuration file. The python code automatically 
takes in the required specifications and builds out a data 
pipeline using the generated configuration file. 

3. IMPLEMENTATION 

The end goal to be achieved is to create a platform for any 
user to be able to create a data pipeline on click of a button or 
a command line execution with arguments passed as 
specifications. As per Figure 3 and 4, the general 
configuration files consists of different sections on broad 
level naming task templates, DAG templates, default 
arguments template, spark cluster templates, operator 
templates etc which may be changed and appended as per 
use and requirement. Each section consists of different types 

of templates containing different possibilities addressed so 
far and which may be used later. Every section may be 
appended with more templates if required and can be used as 
same as other templates. The sections are created distinctly 
keeping in mind the modular approach such that the python 
code which takes the templates from the general 
configuration file may take the required templates from 
different sections as per mentioned in the template of DAG to 
be created which the user mentions as a parameter while 
executing the python code. For example, any template of a 
specific type of DAG only contains the parameters specific to 
the DAG declared once as in declaration of what tasks would 
be in the DAG and their interdependencies, the declaration of 
DAG specific parameters which are used by the python code 
to fill in the values for the key-value pairs specified in the 
template. The task section contains all of the possible task 
definitions and is included in the DAG generation code using 
their declarations in the DAG template. Similarily, the default 
arguments which is generally passed to every data pipeline 
created is defined in a separate section and is used by the 
python code to feed into every DAG creation as per required. 
All the task definitions are present in the python code using 
jinja templating which when picked and merged in a custom 
manner as per requirement or interdependency of tasks as 
per the definition of the DAG template specified by the user 
creates a fully defined DAG to be dumped into a configuration 
file which is read by DAG factory module to create a python 
based configuration file to be executed by airflow. Addition of 
new task in the tasks section of the general configuration file 
also means addition of its corresponding definition in the 
python code. 

4. INNOVATION 

The existing systems doesn’t allow every user to create 
data pipeline easily as it encourages to do so 
programmatically which corresponds to knowledge of the 
required technology stack in order to deliver the correct 
outcome. The proposed architecture is robust in nature and 
abstracts all the implementations of a data pipeline from 
creation to execution of data pipeline. The paper proposes an 
architecture which reduces the human intervention in data 
creation process to create the desired python-based 
configuration file using the below mentioned approach 

1. Any completely defined data pipeline python based 
configuration file can be divided into modular sections like 
task definition, task interdependency, default arguments, 
operators used etc. 

2. Create different template based configuration files 
for every section possible in a completely defined data 
pipeline leveraging modularity and cutting down code 
repeatability. 

3. Develop a python script which 

• takes in the specific arguments from the user 

• fetches the required templates from different 
configuration files 

• converts the templates into properly defined 
modular sections using jinja templates 
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• clubs the required modules in specific order to 
create a completely defined configuration file. 

4. The configuration file is processed by “DAG-factory” 
module to convert it into a python based configuration file. 

5. The python script is an executable used by Airflow 
interpreter to execute DAGs. 

The whole process of DAG creation requires user to 
provide the information about what to perform using the 
DAG to create, knowing the resources and links to be used to 
accomplish use of DAG. This approach may potentially change 
the world’s notion of data pipeline creation needs a skilled 
python programmer. 

5. RESULTS 

 

Figure 5 Comparison of proposed vs existing 
implementations 

 

 

The criteria chosen to compare the 2 implementations 
define the advancements possible in Airflow user experience. 
The system has been effectively tested in a rapidly growing 
software company, and showed satisfactory results. The 
implementation correctly ensures the reliability and 
robustness of the system testing process. The comparisons 
where done between the existing python-based DAG 
configuration files in the company and their equivalent 
conversions into the template-based implementation. The 
equilavent template-based implementation where used to 
automatically create python based DAG configuration files on 
issue of desired arguments to the python code generator . 

6. CONCLUSION 

Template-based automation of DAG creation is an 
expiremental project work taken in order to prove that it’s 
efficient and effective implementation will definitely cause a 
shift in mindset from the way, data pipelines are generally 
written in today’s world to an automated DAG creation 
platform where specifying the expectation from the data 
pipeline to be created is enough .This template based 
implementation works quite well because of the simple 
reason that a task is the fundamental unit of any data pipeline 
and any task is created using an operator definition from a set 
of limited number of operators. Therefore, a proper definition 
of usage of every operator in a manner such that the 
definitions can be used by any task implementation is 
enough. Data pipeline implementation makes the proposed 
template-based data pipeline creation work. It also allows a 
very robust implementational abstraction of data pipeline 
creation from the end user who doesn’t need to know the 
implementational part ensuring the benefits of abstraction to 
be leveraged later. 

7. FUTURE WORK 

It can be started as an open source project to create an 
ecosystem where different and new tasks created, Different 
and new DAGs created can be pushed in a general config file 
and they can be used as template to generate similar DAGs 
multiple times all over the world on a single search on the file 
with specific parameters assigned. Further, the future work 
for the project would be to make it robust and enough user 
friendly so that it can mainstreamed by the open source 
community to use it for data pipeline creation rather than 
writing repeated codes. Making the User interface as easy and 
user friendly as possible so that people can specify search 
through the DAG templates available, create a non-existing 
DAG template through clicks of buttons, select the template 
for DAG creation and specify parameter changes if required 
to create data pipeline. Link the DAG creation to direct 
execution of data pipeline on AIRFLOW. Thus completing the 
user experience of creation and execution of data pipelines 
through clicks of button than coding all of it together. 
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