
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2463

Automation of Data Pipeline Creation in Apache Airflow

Prakarsh Anand1, Anuj Jain2, Suma B3

1Student, R V College of Engineering, Bengaluru, India
2Employee, Bounceshare Pvt Ltd, Bengaluru, India

3Professor, R V College of Engineering, Bengaluru, India
---***--
Abstract - A data pipeline is a series of data processing
steps. Data pipelines consist of three key elements: a source, a
processing step or steps, and a destination. They are scheduled
at regular intervals using job executors. They are organised as
a directed acyclic graph(DAG) containing a starting point and
an endpoint in the DAG. When tasks are executed in sequential,
parallel or any desired manner it gives out a meaningful
outcome which is used for data analysis or data sciences.
Today, data pipelines are being created using programming
python scripts from scratch. Airflow provides a very useful user
interface for monitoring of execution of the data pipelines as
per schedule and requirement.

The paper proposes an end to end UI solution from data
pipeline creation to monitoring. It proposes to provide a state
of art user experience. This allows non-technical users to
leverage the advantages of data orchestration tools. The paper
uses Airflow, an open-source data orchestration tool and a
python module named “DAG-factory” to implement the
proposed solution. Approximately 65 % of all the users of
Airflow are data engineers and 97% of the data pipelines
executed on Airflow are used for Data Processing(ETL).
Therefore, the paper focuses on data processing users as its
primary users to provide the best user experience.

Key Words: ETL, Airflow, data engineering, DAG, DAG -
factory, data-pipelines

1. INTRODUCTION

To deal with scheduled job execution many data pipeline
orchestration tools like Airflow have been developed. Their
primary work is to create robust task inter-linkages in a
data-pipeline and perform scheduled runs at a regular
interval. Out of several orchestration tools, Airflow provides
a lot of monitoring and customisation functionalities as GUI.

Quoting Apache Airflow documentation - “Airflow is a
platform created by community to programmatically author,
schedule and monitor workflows”. Airflow provides features
to monitor workflow progress and execute DAGs. It allows
visualisations to check how a DAG execution time varies with
an increase in data to be processed, to check if a task
execution can be performed in parallel without any data
dependency. It allows back-filling of data through scheduled
DAG execution using DAG execution date and not the start
date of DAG. These features have undoubtedly made it
massively useful worldwide.

1.1 Existing Systems

Airflow became Top-Level Apache Software Foundation
project in January 2019 and has been used by a lot of
companies catering their need to perform different data
orchestration easily and efficiently. Airflow also supports a
lot of different formats of input allowing it to be used
universally to process any kind of data stored or task to be
executed. Creation of tasks needs an operator in general.
Airflow supports different kinds of operators, hooks or
sensors where each of them can be used to create a task to be
executed in a workflow. Different data pipelines are created
using the customised cross-linking of different tasks which
may run in parallel or sequence as per specified task
dependencies created to serve the purpose of DAG creation in
a meaningful manner. Airflow also supports python operator
which opens a whole lot of possibility of tasks to be created
ranging from machine learning module execution to simple
control statement execution. The usefulness of python
operator in Airflow environment is because any data pipeline
created is a python based configuration file which is read by
Airflow’s python interpreters. Therefore, a python based
configuration file can be used for any DAG creation.

Figure 1 General Workflow of Airflow

Airflow’s execution environment and the standard steps to
process DAG creation and execution comprise the whole
framework used to perform data orchestration. It has been
widely in use by a lot of organisations but with a very

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2464

obvious lagging step of programmatical data pipeline
creation. It leads to different complications like

1. One needs to know python programming to relish
the full potential of the variation of data pipelines that can be
created and executed.

2. The limited set of operators, sensors or hooks in
contrast to rich functionalities provided by python has led to
a lot of redundant and non-standardized codes across
organisations. They generally are observed as different
combinations of same task structures driven by mere syntax
usage of operators defined by Airflow.

3. Creation of different ways of solving the problem of
repetitive code-based data pipeline creation using pre-
processing of different configuration files parsing. For
example “.ini” extensions or “.yaml” extensions.

4. If DAGs are being created by not looking after the
code repeatability issue, it allows errors like no
standardisation of codebase at least across organisation.
Human error during implementation increases as the
dependability on the way an individual gets his/her work
done creeps in every time. Machine-based task creation
allows code standardisation and removes human
intervention reducing the errors of DAG creation to be
negligible. But this doesn’t solve the code repeatability issue.
This impacts the scalability of code and the organisation as a
whole.

5. The steps or creativity applied using the tools
available to reduce code repeatability by organisations are
generally organisation specific which caters to the needs of
an organisation and solid documentation is needed to scale
the organisation and code base efficiently. It also means any
new user of the non-standard tool created by the
organisation needs to learn it from scratch using the
organisation resources and it can’t be used as a standard tool
which doesn’t serve the purpose as per the analysis of this
paper.

1.2 Scope and Motivation

With every addition of module in the python library, DAG
creation becomes more efficient and its userbase scales
massively increasing the use of Airflow in particular multiple
folds. One such python module addition is “ DAG-factory “
which if used in full potential will open DAG creation and
execution for non-technical people. This will allow them to
work with data orchestration as efficiently as people who
know python programming. The proposed methodology
leverages the full potential of DAG factory python module
which reads a YAML based configuration file and converts it
into a python-based configuration file internally. This
python-based configuration file is used by the Airflow
execution environment to create and execute data pipelines.

Always a YAML based configuration file readability and
writability are far more generalised and easier than a
python-based configuration file creation. It allows non-
python developers, common users of the data pipelining
environment or any person who can understand
configuration files to understand and write a configuration
file which involves very less complexity as compared to
python-based configuration files and thus has fewer chances
of human error and increase in the user base of airflow as a
data orchestration platform. This is the whole purpose of
implementation of “DAG factory” module as an open-source
module. It serves the purpose of an increase in the user base
of open-source data pipeline execution environment Airflow.
It also creates a potential extension of the usage of the
module to completely change the way DAG creation has been
looked and assumed by the world so far. It has given the
potential to create an environment which may create the
desired DAG on click of a button or a mere command-line
execution. The paper describes an approach which may
potentially change the world's notion of data pipeline
creation from being a skilled person in required technology
to merely using the UI to specify what you want to perform
using the data pipeline and the resources to be used.

Figure 2 Proposed Airflow Architecture Diagram

2. METHODOLOGY

Airflow defines DAG as a Python script, which represents
the DAGs structure (tasks and their dependencies) as code in
their official documentation. This has been interpreted as
skilled users may generally create a python script to create
data-pipelines. Airflow uses a python-based configuration file
to interpret and create data pipelines accordingly to be
scheduled to execute at regular interval. These python-based
configuration files can be created through coding the python
configuration file manually or using the DAG-factory module
which parses a configuration file and converts it into a python
based configuration file to be interpreted for DAG creation.
The DAG-factory module only needs the source path of the
configuration file to fetch the file content and parses it to
create a python based configuration file. A configuration file
can contain many DAG definitions where each section in the
configuration file may be fetched as a different DAG
definition. Here, the configuration file is the standard content

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2465

specified in different DAG sections having DAG properties like
the inter-task dependencies, different task definitions with
user-defined values. The creation of these configuration files
may be done manually or through a python code which
generates the configuration file as per user requirement
specified as system arguments while execution.

The python code uses the crux of the proposed solution to
convert the DAG generation process to be easy such that it
can be created by a non-technical person through execution
of the python code with user required arguments. The
solution proposes a general configuration file which contains
template based declarations of all the global variables
required to create a DAG. Templates based declaration of all
the operators , sensors and hooks required to create a task,
different task definition templates which may be directed as
per the DAG generation specified by the user. The general
YAML file contains and may be appended with several DAG
templates following the principle of write once and read
many times. People can add their own customised DAG
templates in the general configuration YAML file .The python
code reads and takes out the template from the general
configuration file as per the DAG to be created specified by
the user . It fills in the values required to define the DAG. The
DAG definition is at last dumped into the YAML file to be used
by the DAG factory module to create the data pipeline.

Figure 3 Configurable DAG specific templates

This process repeats without any human intervention
whenever a DAG is generated creating a drastic change from
the way people are used to code a python-based
configuration file to an automated configuration file
generation using standard parameters already specified in
the general configuration file. The python code automatically
takes in the required specifications and builds out a data
pipeline using the generated configuration file.

3. IMPLEMENTATION

The end goal to be achieved is to create a platform for any
user to be able to create a data pipeline on click of a button or
a command line execution with arguments passed as
specifications. As per Figure 3 and 4, the general
configuration files consists of different sections on broad
level naming task templates, DAG templates, default
arguments template, spark cluster templates, operator
templates etc which may be changed and appended as per
use and requirement. Each section consists of different types

of templates containing different possibilities addressed so
far and which may be used later. Every section may be
appended with more templates if required and can be used as
same as other templates. The sections are created distinctly
keeping in mind the modular approach such that the python
code which takes the templates from the general
configuration file may take the required templates from
different sections as per mentioned in the template of DAG to
be created which the user mentions as a parameter while
executing the python code. For example, any template of a
specific type of DAG only contains the parameters specific to
the DAG declared once as in declaration of what tasks would
be in the DAG and their interdependencies, the declaration of
DAG specific parameters which are used by the python code
to fill in the values for the key-value pairs specified in the
template. The task section contains all of the possible task
definitions and is included in the DAG generation code using
their declarations in the DAG template. Similarily, the default
arguments which is generally passed to every data pipeline
created is defined in a separate section and is used by the
python code to feed into every DAG creation as per required.
All the task definitions are present in the python code using
jinja templating which when picked and merged in a custom
manner as per requirement or interdependency of tasks as
per the definition of the DAG template specified by the user
creates a fully defined DAG to be dumped into a configuration
file which is read by DAG factory module to create a python
based configuration file to be executed by airflow. Addition of
new task in the tasks section of the general configuration file
also means addition of its corresponding definition in the
python code.

4. INNOVATION

The existing systems doesn’t allow every user to create
data pipeline easily as it encourages to do so
programmatically which corresponds to knowledge of the
required technology stack in order to deliver the correct
outcome. The proposed architecture is robust in nature and
abstracts all the implementations of a data pipeline from
creation to execution of data pipeline. The paper proposes an
architecture which reduces the human intervention in data
creation process to create the desired python-based
configuration file using the below mentioned approach

1. Any completely defined data pipeline python based
configuration file can be divided into modular sections like
task definition, task interdependency, default arguments,
operators used etc.

2. Create different template based configuration files
for every section possible in a completely defined data
pipeline leveraging modularity and cutting down code
repeatability.

3. Develop a python script which

• takes in the specific arguments from the user

• fetches the required templates from different
configuration files

• converts the templates into properly defined
modular sections using jinja templates

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2466

• clubs the required modules in specific order to
create a completely defined configuration file.

4. The configuration file is processed by “DAG-factory”
module to convert it into a python based configuration file.

5. The python script is an executable used by Airflow
interpreter to execute DAGs.

The whole process of DAG creation requires user to
provide the information about what to perform using the
DAG to create, knowing the resources and links to be used to
accomplish use of DAG. This approach may potentially change
the world’s notion of data pipeline creation needs a skilled
python programmer.

5. RESULTS

Figure 5 Comparison of proposed vs existing
implementations

The criteria chosen to compare the 2 implementations
define the advancements possible in Airflow user experience.
The system has been effectively tested in a rapidly growing
software company, and showed satisfactory results. The
implementation correctly ensures the reliability and
robustness of the system testing process. The comparisons
where done between the existing python-based DAG
configuration files in the company and their equivalent
conversions into the template-based implementation. The
equilavent template-based implementation where used to
automatically create python based DAG configuration files on
issue of desired arguments to the python code generator .

6. CONCLUSION

Template-based automation of DAG creation is an
expiremental project work taken in order to prove that it’s
efficient and effective implementation will definitely cause a
shift in mindset from the way, data pipelines are generally
written in today’s world to an automated DAG creation
platform where specifying the expectation from the data
pipeline to be created is enough .This template based
implementation works quite well because of the simple
reason that a task is the fundamental unit of any data pipeline
and any task is created using an operator definition from a set
of limited number of operators. Therefore, a proper definition
of usage of every operator in a manner such that the
definitions can be used by any task implementation is
enough. Data pipeline implementation makes the proposed
template-based data pipeline creation work. It also allows a
very robust implementational abstraction of data pipeline
creation from the end user who doesn’t need to know the
implementational part ensuring the benefits of abstraction to
be leveraged later.

7. FUTURE WORK

It can be started as an open source project to create an
ecosystem where different and new tasks created, Different
and new DAGs created can be pushed in a general config file
and they can be used as template to generate similar DAGs
multiple times all over the world on a single search on the file
with specific parameters assigned. Further, the future work
for the project would be to make it robust and enough user
friendly so that it can mainstreamed by the open source
community to use it for data pipeline creation rather than
writing repeated codes. Making the User interface as easy and
user friendly as possible so that people can specify search
through the DAG templates available, create a non-existing
DAG template through clicks of buttons, select the template
for DAG creation and specify parameter changes if required
to create data pipeline. Link the DAG creation to direct
execution of data pipeline on AIRFLOW. Thus completing the
user experience of creation and execution of data pipelines
through clicks of button than coding all of it together.

8. ACKNOWLEDGEMENT

We would like to acknowledge the support provided by
employees of Data Engineering Team, Bounceshare,
Bengaluru, India and teachers of Department of Computer
Science & Engineering & Department of Biotechnology, RV

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2467

College of Engineering, Bengaluru, India through their
assistance during the research work.

9. REFERENCES

1. H. Bal, M. Haines, "Approaches for Integrating Task and
Data Parallelism", IEEE Concurrency, vol. 6, no. 3, pp. 74-
84, July-Aug. 1998.

2. O. Delannoy, N. Emad, S. Petiton. Workflow Global
Computing with YML. In: Proceedings of the 7th
IEEE/ACM International Conference on Grid Computing,
GRID'06. ACM Press, New York, 2006. 25-32.

3. F. P. Guimarães and A. C. M. Melo, "User-Defined Adaptive
Fault- Tolerant Execution of Workflows in the Grid," in
Proceedings of the IEEE CIT, Sep 2011, pp. 356-362.

4. L. Li, Z. Miao, L. Yuqing, Q. Liangjuan, "A Survey on
Workflow Management and Scheduling in Cloud
Computing", Cluster Cloud and Grid Computing (CCGrid)
2014 14th IEEE/ACM InternationalSymposium on, pp.
837-846, 2014.

5. M. Kotliar et al., "CWL-Airflow: a lightweight pipeline
manager supporting common workflow language",
bioRxiv, 2018.

6. M. Beauchemin, (2014) Apache Airflow Project.

7. A. Barker, J. Van Hemert, "Scientific workflow: a
survey and research directions", International Conference
on Parallel Processing and Applied Mathematics, pp. 746-
753, 2007.

8. E. Deelman, T. Peterka et al., "The future of scientific
workflows", The International Journal of High
Performance Computing Applications, 2018.

9. R. Sumbaly, J. Kreps, S. Shah, "The big data ecosystem at
linkedin", Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, pp.
1125-1134, 2013.

10. W. Hummer, V. Muthusamy, T. Rausch, P. Dube, K. El
Maghraoui, "Modelops: Cloud-based lifecycle
management for reliable and trusted ai", 2019 IEEE
International Conference on Cloud Engineering (IC2E'19),
Jun 2019.

11. G. Alonso, D. Agrawal, A. El Abbadi, C. Mohan,
"Functionality and Limitations of Current Workflow
Management Systems", IEEE Expert, vol. 1, no. 9, 1997.

12. M. Rosemann, "Evaluation of Workflow Management
Systems - a Meta Model Approach", In: Proceedings of the
2nd International CAiSE/IFIP 8.1. Workshop 'Evaluation
of Modeling Methods in Systems Analysis and Design,
1997.

13. M. Berger et al., An Evaluation of Workflow
Management System, Austria:Institute for Applied
Computer Science and Information Systems, University of
Vienna, 1997.

14. Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S.,
Maechling, P.J., Mayani,R. Chen, W., Da Silva, R.F., Livny,

M., et al.: Pegasus, a workflow management system for
science automation. Future Generation Computer Systems
46, 17–35 (2015)

