A Systematic Study on Sentimental Analysis and its Applications

Karthik Konar¹, Riddhi Patel²

¹MCA Student, Dept. of Computer Engineering, NMIMS Mukesh Patel School of Technology Management & Engineering, Vile Parle(West) Mumbai.
²MCA Student, Dept. of Computer Engineering, NMIMS Mukesh Patel School of Technology Management & Engineering, Vile Parle(West) Mumbai.

Abstract - Sentiment analysis is the process of determining the opinion or feeling from a piece of text. In this paper, we have presented our experimental results on the performance evaluation of various sentiment analysis applications using various approaches. We have implemented a). Sentiment analysis using the Machine Learning approach. b). Sentiment analysis using the VADER Sentimental Analysis approach to find the accuracy of the found polarity through a text document. c). The Lexicon approach has been used in a Chatbot to find the polarity and subjectivity of the product review. We have also discussed the implementation with the help of the flowchart and code snippet. The efficiency of approaches implemented is being discussed and comparatively studied.

Key Words – Chabot, Lexicon, Machine learning, Polarity, Subjectivity, Sentimental Analysis, Vader.

1. INTRODUCTION

Sentimental analysis is that particular domain, where you try to understand human emotions with the help of a software. Human emotions are in written form, and we classify those sentiments as positive, negative, neutral. Sentiment analysis is also called opinion mining because we are trying to analyse the thoughts of a customer with respect to that particular product. Nowadays the customer plays a very big role in making a business successful. A customer can make or break the organization, therefore it is very important for the organization to understand the sentiments of its customers so that the organization can reach heights. Therefore the sentimental analysis is essential. The sentimental analysis determines useful information, those information can be used to understand the market strategy, generate needs.

There are various applications of sentimental analysis such as Review classification, Product review mining, etc. In review classification, we classify the user reviews into 3 categories i.e. positive, negative, and neutral. For e.g.: There are a lot of customers, who post a lot of reviews, how do we know the sentiment of each customer? This is where we can use sentimental analysis and classify the reviews to be positive, negative, neutral. The next application is product review mining. For e.g.: There is a company which manufactured a product say ‘A’ now the company wants to know what features which are there in the product are liked by its customers, to determine that company can take the help of sentimental analysis. Sentimental analysis can also be used during election times. for e.g.: say there are 2 candidates i.e. “A” and “B” with the help of sentimental analysis we can find which candidate is more popular.

2. RESULTS AND DISCUSSION

2.1 System Architecture of ChatBot¹ Developed for product review mining.

Fig 1.1: System Architecture of Chatbot for product Review Classification.
The algorithm for the above chatbot is shown as follows:

Step 1: A greeting message is displayed to the user. The user is asked to greet back the chatbot. The greeting sentence of the user is then subjected to undergo polarity and subjectivity checks. If the polarity of the sentence is less than 0 and the subjectivity of the sentence is greater than or equal to 0.5 the chatbot assumes that the user is angry and displays an appropriate message to the user and the chatbot terminates.

Step 2: if the polarity of the sentence is not less than 0 and the subjectivity of the sentence is less than 0.5 the chatbot assumes that the user is fine and happy and the chatbot asks the user to input the product name recently purchased by him/her, and then the chatbot asks the user to write a review about that particular product.

The review is then subjected to measure polarity on the text.

If the polarity of the sentence:

(a) Is greater than or equal to 0.7, the chatbot assumes that the product was fantastic and then it terminates.

(b) It is greater than or equal to 0.5 and less than 0.7, the chatbot assumes that the product was above average and then it terminates.

(c) Is greater than or equal to 0 and less than 0.4, the chatbot assumes that the product was average and then it terminates.

(d) It is less than -0.5, the chatbot assumes that the product was worse.

2.2 **System Architecture which is developed for classifying the text as positive, negative, neutral using machine learning approach**

![System Architecture Diagram](image)

Fig 1.2: System Architecture developed for classifying the text as positive, negative, neutral using a machine learning approach.

The algorithm for the above architecture is as follows:

Step 1: Import all the necessary libraries in python such as Text Blob, newspaper, nltk.
Step 2: Specify the URL of the website which you wish to download to check the sentiment of the text.

Step 3: Perform some natural language processing operations.

Step 4: Print the article.

Step 5: Now in order to know the sentiment of the text which is downloaded through the specified URL, you need to create an object of the TextBlob.

Step 6: After performing step (5) measure the polarity in each sentence.

Step 7: if polarity (sentence) ==0:
 Then print “The text is neutral”.
 Else if polarity (sentence)>0:
 Then print “The text is positive”.
 Else:
 Print “The text is negative”.

2.3 System Architecture developed for classifying the accuracy of positive and negative reviews using SentimentIntensityAnalyzer Module.

(a)To calculate the accuracy of positive dataset movie reviews.

![System Architecture](image-url)
The algorithm for the above architecture is as follows:

Step 1: Import all the necessary libraries in python such as TextBlob, SentimentIntensityAnalyzer.

Step 2: Now declare two variables for positive review i.e. pos_count, pos_correct, and initialize them to 0.

Step 3: Open the positive review file where all the positive text is stored.

Step 4: Now run a for loop to read that text file and split the line in a new line.

Step 5: Declare a new variable to store the split line.

Step 6: After performing step (5) measure the polarity in each sentence.

Step 7: if polarity(sentence)>0.1:

Then increment pos_correct

Increment pos_count

Step 8: Once the polarity is been checked now calculate the accuracy of positive review and print the accuracy

Print "Positive accuracy= {} % via {} samples". Format (pos_correct/pos_count*100.0, poscount)

(b) To calculate the accuracy of negative dataset movie reviews.

Fig 1.4: System Architecture developed for classifying the text as positive, negative, neutral using a feature vector approach.
The algorithm for the above architecture is as follows:

Step 1: Import all the necessary libraries in python such as TextBlob, SentimentIntensityAnalyzer.

Step 2: Now declare two variables for negative review ie. neg_count, neg_correct and initialize them to 0.

Step 3: Open the positive review file where all the negative text is stored.

Step 4: Now run a for loop to read that text file and split the line in a new line.

Step 5: Declare a new variable to store the split line.

Step 6: After performing step (5) measure the polarity in each sentence.

Step 7: if polarity(sentence) < 0.1:

Then increment neg_correct
Increment neg_count

Step 8: Once the polarity is been checked now calculate the accuracy of a negative review and print the accuracy

Print “Negative accuracy={}% via {} samples”. Format(neg_correct/neg_count*100.0, poscount)

2.4 RESULTS

(1) RESULTS OBTAINED FOR THE MODULE WHICH WAS DEVELOPED USING LEXICON APPROACH. (FOR PRODUCT REVIEW MINING)

Fig 1.5: In the above figure the polarity measured from the Greeting sentence is less than 0. So therefore the chatbot learns that the user is angry, therefore displays appropriate messages and then terminates.

Fig 1.6: In the above figure the polarity measured from the sentence is greater than 0.7. So therefore the chatbot learns that the product is wonderful.
What was the last product you bought?

nokia lumia

Oh wow.. I want to buy that too..!! How is it?
it was above average phone

Oh..so it was a mediocre product

Fig 1.7: In the above figure the polarity measured from the sentence is greater than 0 and less than or equal to 0.4 so therefore the chatbot learns that the product is average.

What was the last product you bought?

earphones

Oh wow.. I want to buy that too..!! How is it?
it is worst

Oh No...Was it that bad? I hope your money get refunded

Fig 1.8: In the above figure the polarity measured from the sentence is less than -0.5 so the chatbot learns that the product is worse

(II) RESULTS OBTAINED FOR THE MODULE WHICH WAS DEVELOPED FOR TEXT CLASSIFICATION USING MACHINE LEARNING APPROACH. (FOR TEXT CLASSIFICATION).

Fig 1.9: In the above figure the polarity measured from the article is equal to 0 so the machine learns that the text is neutral.

(III) RESULTS OBTAINED FOR THE MODULE WHICH WAS DEVELOPED FOR CLASSIFYING THE ACCURACY OF POSITIVE AND NEGATIVE REVIEWS USING SENTIMENT INTENSITY ANALYZER (FOR MOVIE REVIEW CLASSIFICATION)

5332 samples were tested and classified into positive and negative reviews and their accuracy was calculated.

3. OBSERVATIONS.

<table>
<thead>
<tr>
<th>SR.NO</th>
<th>TECHNIQUE</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lexicon Approach</td>
<td>Easy to implement, Easy to understand, Less complex</td>
<td>Does not provide 100% accurate results.</td>
<td>It is implemented on a chatbot which classifies product reviews as positive, negative, neutral. Mainly it is implemented for product review mining.</td>
</tr>
</tbody>
</table>
Table 1.1: Summary of Comparison.

<table>
<thead>
<tr>
<th></th>
<th>Machine Learning Approach</th>
<th>Provides more accurate results when compared with lexicon based approach.</th>
<th>Little complex to implement, understand, time consuming.</th>
<th>It is implemented for text classification. A program was developed which downloads articles from the internet and then classifies those text obtained from the article as positive, negative, neutral. It works by measuring polarity of each and every sentence.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>VADER Sentiment analysis</td>
<td>It provides the most accurate results when compared with the above 2 approaches.</td>
<td>NIL.</td>
<td>5332 datasets were tested using this approach to classify the accuracy of positive and negative reviews.</td>
</tr>
</tbody>
</table>

V. CONCLUSION

This paper provides a detailed comparison of various applications of sentiment analysis which was implemented using different approaches such as lexicon, machine learning, and VADER sentiment analysis. Based on the experiment performed we found that VADER sentiment analysis provides the highest accuracy when compared with the lexicon and machine learning approach. 5332 datasets were tested using the VADER Sentiment analysis approach to classify the accuracy of positive and negative reviews and the time taken for execution is very less when compared with the lexicon and machine learning approach.

REFERENCES

AUTHORS

Karthik Konar is a first year student pursuing MCA from SVKM NMIMS Mukesh Patel School of Technology Management and Engineering (MPSTME), Mumbai, India. His passion for research led him to gain interest in exploring new domains such as artificial intelligence, wireless sensor networks, Cyber forensics. He has published 3 research papers in the fields of wireless sensor networks, artificial intelligence, cyber forensics.

Riddhi Patel is a first year student pursuing MCA from SVKM NMIMS Mukesh Patel School of Technology Management And Engineering (MPSTME), Mumbai, India. She has completed her B.SC IT from jai hind college, Mumbai, India. Her Research domain is artificial intelligence, computer networks.