
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1890

DataFrames on the GPU

Aditya Puranik1

1Student, The National Institute of Engineering, Mysuru
---***---
Abstract - A DataFrame is a data structure which supports
a variety of operations like map, reduce, filter, join, Etc on
tabular data. It is a primitive non-relational and in-memory
database system with a focus on speed and efficiency rather
than features. They are used extensively in data science and
machine learning pipelines. Graphical Processing Units(GPU's)
are computation devices which are highly parallel in nature
built for graphics applications. However, they are commonly
used as accelerators in compute intensive and parallelizable
applications. In this paper we explore the possibility of
accelerating a number DataFrame operations on the GPU
written in a high-level language (Julia). In particular we
implement the three-fundamental big-data operations which
are map, reduce and filter.

Key Words: GPU, DataFrame, Julia, CUDA, Map-Reduce

1.INTRODUCTION

While an interactive environment is great for understanding
data, associated challenges and writing code, with large
datasets we require speed and interactivity is no longer a
requirement once the solution code has been written. Often
this has meant that the user must rewrite their program in a
lower level language like C++ which is performant. This is
known as the two-language problem wherein prototyping is
done in a High-level language like Python or MATLAB and
later the code is rewritten in a lower level language like C++
for performance reasons. With a large number of scientists
and engineers having a non-CS background this is a very
challenging problem for them.

Julia is a high-level language which aims to solve this "two-
language" problem [1]. The idea is that despite having the
syntax of a high-level language which is quite similar to that
of Python its performance is quite similar to that of C or C++
often off by a factor of up to two which is great to save
developer time. It has a number of high-level language
features like pythonic syntax, interactive REPL environment,
metaprogramming, Etc It also has a fantastic GPU stack
which allows us to write both high-level
and low-level code to be executed on our GPU's. Tim
Besard's paper on this explains the GPU stack of Julia very
well [2].

GPU's are devices connected to a computer through the PCIe
lane. They possess a large number(1000's) of less "smart"
cores which are capable of processing independent of each
other in parallel. However, being less smart they are
extremely slow for serial tasks but blazingly fast for parallel

tasks. GPU's are often described using the SIMT(Single
instruction multiple thread) model which is analogous to the
SIMD(Single instruction multiple data) model. The idea is
that all of these "less smart" cores are performing the same
instruction albeit on different data. There can be a level of
thread divergence where two threads may be performing
different operations concurrently but that generally has a
significant performance penalty. GPU's are much more
complicated than the simple description we have given
above as that is beyond the scope of this paper. There are a
number of performance considerations we must have while
designing GPU applications. Factors like memory transfers
(RAM <--> GPU), synchronization barriers and thread
divergence can slow down GPU applications considerably
making its performance orders of magnitude worse than the
CPU. Fortunately, a number of operations concerned with
DataFrames are "embarrassingly parallel" making GPU's an
ideal porting target for DataFrame applications.

CUDA which stands for (Compute unified device
architecture) refers to NVIDIA's GPU platform for their own
GPU's. It is an extremely refined software stack upon which a
number of bleeding machine learning and data stacks are
built. It is due to this refinement and production quality
software stack we have chosen CUDA. When we wish to use
Julia with NVIDIA a number of packages like CUDAnative.jl,
CUDAdrv.jl and CuArrays.jl allows us to write almost native
Julia code which compiles for the NVIDIA GPU. Currently,
work on the AMD stack is ongoing on the Julia GPU stack
hence the hope is that eventually we can write the same code
for both NVIDIA and AMD cards as Julia's Internal compiler
infrastructure can take care of translations.

2. Operations

2.1. Map
Map is a fundamental operation which applies a higher-level
function to a list(s).

julia> map(x -> x * 2, [1, 2, 3])
 3-element Array{Int64,1}:
 2
 4
 6
julia> map(+, [1, 2, 3], [10, 20, 30])
 3-element Array{Int64,1}:
 11
 22
 33

Listing-1: Map examples

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1891

Since each element can be computed independent of the
other elements it's quite straight forward to implement a
GPU version. One advantage of using Julia compared to
Python is that we can directly write native Julia code for
out mapping function and the compiler will generate an
efficient version provided that the function's code is type
stable and uses only static fundamental data types (int32,
int64, bool, float32, float64,.etc) as GPU's cannot support
complicated datatypes like Strings and BigInt's out of the
box.

Another benefit of using Julia is that it will automatically
replace functions with the best implementation available.
Using a complicated expression like

x -> x^2 + sin(y) + 1.9sqrt(|cos(z)|) (1)

Where x, y and z are different columns of the DataFrame. The
compiler will automatically replace the call to sin(x) with
NVIDIA's sin(x) however if a function isn't implemented by
NVIDIA, Julia can use its internal definition to generate code
that will work. There is absolutely no guarantee that this
code will be optimal. It is most likely that it will be non-
performant as internal definitions were written for the CPU
which generally has a lot of branches which is really bad for
the GPU performance wise. It is the user's responsibility to
profile the code and/or check the output assembly to check
for badly generated code for functions that aren't
fundamental or defined by them in a way which is good for
the GPU.

Given p parallel processors and n elements, map can be
computed in O(n/p)

Figure-1: GPU speedup over CPU for map operation

The above benchmark shows us the speedup of the CUDA
GPU version relative to the CPU version on the simple
function f(x) = x2. For small array sizes the CPU is significantly
faster with the GPU overtaking it at around 217 ~105 elements
with the GPU getting a 20x speedup for 228 2.6*108 elements.
We must also note that Julia has auto-vectorized the CPU
version. As the input function f(x) gets more complicated the
GPU speedup is expected to be higher. Also our map is only

using a single input vector, adding more input vectors like in
equation(1) will perform better on the GPU.

2.2. Reduce

Reduce applies a binary operator to each element of a given
list.

julia> reduce(*, [2; 3; 4])
 24
julia> reduce(xor, [7; 8; 9])
6
#0111 xor 1000 xor 1001 = 0110

Listing-2: Reduce examples

Figure-2: GPU speedup over CPU for reduce operation

Unlike the map example both the final speedup for large
arrays is less along with the point where the GPU overtakes
the CPU 220 here vs 217 earlier. This is understandable as
unlike the last example there is a level of dependency among
all elements and the GPU kernel has points of synchronization
which hits the throughput of this operation.

Given ̀ p` processors and array length of ̀ n` the complexity of
parallel reduce is O(n/p + log(N)).

It should also be noted that IEEE Floats are not associative
which means that for two floating points `x` and `y` there is
no guarantee that x + y = y + x. Hence for a lot of reduction
operations expecting the answer to be exactly same cannot be
guaranteed due to the way floating point math works which
has a lot of repercussions on GPU code since the result
depends upon the exact order of events which cannot be
guaranteed in a parallel environment. A lot of nuance of
floating-point math can be found in Goldberg's paper [3].

As a final example lets return to equation (1) where we do
the map and the reduction too which is exposed via the
mapreduce function which combines both the calls.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1892

Figure-3: GPU speedup over CPU for map-reduce

operation

The benchmark provides sufficient empirical evidence of
how GPU is truly dominant over the CPU, even giving around
an 80x speedup as the array length grows.

2.1.3. Filter

Filter is a method which only selects those elements from a
container which satisfy a predicate equation.

There are two types of filter operations: stable and unstable.
Stable filter method means to maintain the original ordering
of the elements and unstable filter means that the ordering
may be changed in the output container. On a GPU unstable
filter is much faster due to no need for synchronizations.
Stable filtering requires a level of synchronization hence, we
tried to benchmark this worst case against the CPU. We
made our test predicate even worse by testing for odd
integers which causes massive warp-divergence resulting in
50% efficiency.

Figure-3: GPU speedup over CPU for filter operation

3. CONCLUSIONS

 We have gone through the three fundamental operations of
big-data analytics which are map, reduce and filter. The

experiments show very convincingly the acceleration
achieved with the help of a general-purpose GPU.

REFERENCES

[1] Jeff Bezanson, Alan Edelman, Stefan Karpinski, Viral B

Shah, ``Julia: A Fast Dynamic Language for Technical
Computing,'' SIAM review, Volume 59, Page(s): 65 – 98

[2] Tim Besard, Christophe Foket, Bjorn De Sutter,
``Extensible Programming: Unleashing Julia on GPUs,''
IEEE Transactions on Parallel and Distributed Systems,
Volume: 30 , Issue: 4 , Page(s): 827 - 841

[3] D Goldberg, ``What every computer scientist should
know about floating-point arithmetic,'' ACM Computing
Surveys (CSUR), 1991

