Order Reduction Technique using Improved Padé Approximation and Routh Array Method

Shivam Gupta ${ }^{1}$, Shobhit Gupta ${ }^{2}$, Sachindra Patel ${ }^{3}$
${ }^{1}$ Professor, Department of Electronic and Inst. Engineering, Galgotias College of Engineering and Technology, Uttar Pradesh, India
2,3Student, Department of Electronic and Inst. Engineering, Galgotias College of Engineering and Technology, Uttar Pradesh, India

Abstract

In this paper, a mixed-method is used to reduce the higher order of the frequency domain system to lower-order frequency domain system by using improved Padé approximations and Routh array method. The denominator of the proposed method is computed by the Routh array method whereas the numerator is computed by improved Padé approximation. The proposed method helps generate 'r' number of $r^{t h}$ reduced-order models from the original high order system. With the help of a numerical example taken from literature, we can observe the superiority of the proposed method by comparing the proposed method with a well-known existing order reduction technique.

Keywords: Linear Dynamic System, Routh Array Method, Order reduction technique, Padé approximation, Improved Padé approximation.

1. INTRODUCTION

The order reduction technique is a smart idea that reduces the complexity of a higher-order system. The order reduction technique reduces an original high order system into a low order system, yet still, the reduced system retains the main properties of the original system in an optimum manner. Therefore, by converting the original model to a reduced model, the higher-order original system can be analyzed easily. The order reduction technique is a very useful tool in the various field of engineering design such as control theory, power system, fluid dynamics, etc. In the proposedmethod two different order reduction techniques (improved Pad approximation and Routh array method) are mixed to form a new technique for order reduction.in this paper, the Routh array method is used for computation of denominator and improved Pad approximation is used for computation of numerator polynomial. Krishnamurthy [2], had introduced the Routh stability criterion and derived the methodology for the computation of the reduced-order technique in 1978. Routh array method is used for the reduction of both numerator and denominator polynomial but in the proposed method only denominator has been reduced by using the Routh array method while numerator polynomial is reduced by using improved Padé approximation. Sambariya and Prasad, have presented the application of four different methods for finding a decreased order model of a linear time-variant system [3,5,6]. Four methods of finding reduced order for the linear dynamic system have been presented by the Sambariya and Prashad [3,5,6], which are applicable in the field of the power system and also used to reduce the model of the single infinite bus power system (SMIB) [7,8].A mixed approach was introduced by Satakshi[10] for order reduction of a linear time-invariant system. Padé approximation method [13] is used for matching the forced response because it retains even small initial time moments. The inability to retain the stability of the reducedorder system was removed by improved Padé approximations method [13]. Both methods i.e. Routh array method and improved Padé approximations [13] are mixed to form a better technique for order reduction of the linear dynamic systems. Computational simplicity, robustness and stability retention, etc. are some major advantages of the proposed method. Improved page approximation is also able to generate an ' r ' number of $r^{\text {th }}$ order reduction.

2. PROBLEM FORMULATION

Let $\mathrm{G}(\mathrm{s})$ be the transfer function of Higher-order i.e.

$$
\begin{equation*}
\mathrm{G}(s)=\frac{N_{n}(s)}{D_{n}(s)}=\frac{c_{1} s^{n-1}+c_{2} s^{n-2}+c_{3} s^{n-3}+\cdots+c_{n} s^{0}}{d_{1} s^{n}+d_{2} s^{n-1}+d_{3} s^{n-2}+\cdots+d_{n} s^{0}} \tag{1}
\end{equation*}
$$

Where $\left(c_{1}, c_{2}, c_{3} \cdots c_{n}\right)$ and $\left(d, d_{2}, d_{3} \cdots d_{n}\right)$ are unknown constants.

And $G_{r}(s)$ is the reduced transfer function of ' r ' order i.e.

$$
\begin{equation*}
G_{r}(s)=\frac{N_{r}(s)}{D_{r}(s)}=\frac{e_{1} s^{r-1}+e_{2} s^{r-2}+e_{3} s^{r-3}+\cdots+e_{r} s^{0}}{f_{1} s^{r}+f_{2} s^{r-1}+f_{3} s^{r-2}+\cdots+f_{r} s^{0}} \tag{2}
\end{equation*}
$$

Where $\left(c_{1}, c_{2}, c_{3} \cdots c_{n}\right)$ and ($d, d_{2}, d_{3} \cdots d_{n}$) are unknown constants.
Here the problem is to derive a method to find the reduced-order system(2) from the original $n^{t h}$-order system i.e. (1) so that the obtained system preserves all its specifications as much as possible.

3. DESCRIPTION OF THE METHOD

The method of calculating the order reduction is described stepwise below:

3.1 Reduction methodology of the numerator polynomial

- Routh Array Method

Let the transfer function for the higher system be

$$
\begin{equation*}
\mathrm{G}(s)=\frac{c_{1} s^{n-1}+c_{2} s^{n-2}+c_{3} s^{n-3}+\cdots+c_{n} s^{0}}{d_{1} s^{n}+d_{2} s^{n-1}+d_{3} s^{n-2}+\cdots+d_{n} s^{0}} \tag{4}
\end{equation*}
$$

Where $\mathrm{n}=1,2,3$.......
The Routh stability array for the numerator and denominator polynomials of (4) are shown below in Tables 1 and 2, respectively. It is well known that the first two rows of Tables 1 and 2 are constructed from the coefficients of the two polynomials, respectively.

TABLE-1: ROUTH ARRAY OF STABILITY FOR NUMERATOR

C_{11}	C_{12}	C_{13}	C_{14}	C_{15}	C_{16}		--
C_{21}	C_{22}	C_{23}	C_{24}	C_{25}	C_{26}		
C_{31}	C_{32}	C_{33}	C_{34}	C_{35}	-	-	
-	-	-					
-	-	-					
$\mathrm{C}_{\mathrm{n} 1}$							
$\mathrm{C}_{\mathrm{n}+1,1}$							
			BLE	ROU	ARRAY	LITY	DENOMINATOR
d_{11}	d_{12}	d_{13}	d_{14}	d_{15}	d_{16}		-----
d_{21}	d_{22}	d_{23}	d_{24}	d_{25}	d_{26}		-----------------
d_{31}	d_{32}	d_{33}	d_{34}	d_{35}	-	-	
-	-	-					
$\mathrm{d}_{\mathrm{n} 1}$	-	-					

International Research Journal of Engineering and Technology (IRJET)

$\mathrm{d}_{\mathrm{n}+1,1}$

In both the table (table-1 \&table-2) the first row consists of odd coefficients and the second row consists of even coefficients. The first two rows are directly generated from the given transfer function and other remaining rows are calculated by below Eq. 5 .
$X_{i j}=X_{i-2, j+2}-\frac{X_{i-2,1} \times X_{i-1, j+1}}{X_{i+1,1}}$
For I ≥ 3 and $\operatorname{In} \leq\left[\left\{\frac{n-1+3}{2}\right\}\right]$,
Here:
n-order of polynomial,
Starting two rows are directly obtained from given polynomial and other rows are constructed with the help of a conventional method i.e. eq.(5).

Reduction methodology of the denominator polynomial

- Improved padé approximation

By using binomial theorem original high order system can be written as
$\mathrm{G}(\mathrm{s})=\sum_{i=0}^{\infty} M_{i} s^{-i-1} \quad$ (about $\mathrm{s}=\infty$)
$=\sum_{i=0}^{\infty} T_{i} s^{i} \quad$ (about $\mathrm{s}=0$)
Here $T_{i}-i^{\text {th }}$ Time moment and
$M_{i}-i^{t h}$ Markov parameter of $\mathrm{G}(\mathrm{s})$.
Reduced $r^{\text {th }}$ order system is considered as
$H_{r}(s)=\frac{N_{r}(s)}{D_{r}(s)}=\frac{\sum_{i=0}^{r-1} e_{i} s^{i}}{\sum_{i=0}^{r} f_{i} s^{i}}$
The coefficient of $N_{r}(s)$ can be obtained with the help of the following equations.
$\mathrm{e}_{0}=\mathrm{f}_{0} \mathrm{~T}_{0}$
$\mathrm{e}_{1}=\mathrm{f}_{0} \mathrm{~T}_{1}+\mathrm{f}_{1} \mathrm{~T}_{0}$
$\mathrm{e}_{2}=\mathrm{f}_{0} \mathrm{~T}_{1}+\mathrm{f}_{1} \mathrm{~T}_{1}+\mathrm{f}_{2} \mathrm{~T}_{0}$
...
$\mathrm{e}_{\alpha-1}=\mathrm{f}_{0} \mathrm{~T}_{\alpha-1}+\mathrm{f}_{1} \mathrm{~T}_{\alpha-2}+\cdots+\mathrm{f}_{\alpha-2} \mathrm{~T}_{1}+\mathrm{f}_{\alpha-1} \mathrm{~T}_{0}$
$e_{r-\beta}=f_{r} M_{\beta-1}+f_{r-1} M_{\beta-2}+\cdots+f_{r-\beta+2} M_{1}+f_{r-\beta+1} M_{0}$
$\mathrm{e}_{\mathrm{r}-\beta+1}=\mathrm{f}_{\mathrm{r}} \mathrm{M}_{\beta-2}+\mathrm{f}_{\mathrm{r}-1} \mathrm{M}_{\beta-3}+\cdots+\mathrm{f}_{\mathrm{r}-\beta+3} \mathrm{M}_{1}+\mathrm{f}_{\mathrm{r}-\beta+2} \mathrm{M}_{0}$
...
$\mathrm{e}_{\mathrm{r}-2}=\mathrm{f}_{\mathrm{r}} \mathrm{M}_{1}+\mathrm{f}_{\mathrm{r}-1} \mathrm{M}_{0}$
$\mathrm{e}_{\mathrm{r}-1}=\mathrm{f}_{\mathrm{r}} \mathrm{M}_{0}$

Finally, $\mathrm{r}^{\text {th }}$ order numerator $\mathrm{N}_{\mathrm{r}}(s)$ can be obtained solving ' r ' linear equation,
$\mathrm{N}_{\mathrm{r}}(s)=e_{0}+e_{1} s+e_{2} s^{2}+\cdots+e_{r} s^{r-1}$

4. METHOD OF COMPARISON

Accuracy of the proposed method can be checked by the integral square error [ISE] and the integral of the square of error [IAE].[ISE] and[IAE] is calculated by the given formula defined as follows:

ISE $=\int_{0}^{\infty}\left[y(t)-y_{k}(t)\right]^{2} d t$
$\mathrm{IAE}=\int_{0}^{\infty}\left|y(t)-y_{k}(t)\right| d t$
Where
$y(t)$ - unit response of the original system,
$y_{k}(t)$ - unit step responses of reduced order systems and
$y(\infty)$ - the steady-state value of the original high order system.

5. NUMERICAL EXAMPLE

Example 1- Consider a system of six order taken from [5]
$G(s)=\frac{2 s^{5}+3 s^{4}+16 s^{3}+20 s^{2}+8 s+1}{2 s^{6}+33.6 s^{5}+155.94 s^{4}+209.46 s^{3}+102.42 s^{2}+18.3 s+1}$
Routh stability array for denominator:
Table -3: Denominator Table

$\boldsymbol{s}^{\mathbf{6}}$	2	155.94	102.42	1
$\boldsymbol{s}^{\mathbf{5}}$	33.6	209.46	18.3	
$\boldsymbol{s}^{\mathbf{4}}$	143.472	101.3307	1	
$\boldsymbol{s}^{\mathbf{3}}$	185.7291	18.065		
$\boldsymbol{s}^{\mathbf{2}}$	87.3466	1		
$\boldsymbol{s}^{\mathbf{1}}$	15.9386			
$\boldsymbol{s}^{\mathbf{0}}$	1			
\boldsymbol{y}				

Obtained reduced-order denominator derived from the table is:
$D_{r}(s)=87.3466 s^{2}+15.9386 s+1$
Using improved Padè approximation technique in numerator polynomial:
For the calculation of reduced numerator, some required Time moments and Markov parameter are as
Time moments: $T_{1}=1, T_{2}=-8.3, T_{3}=69.47$
Markov parameters: $M_{1}=1, M_{2}=-15.3, M_{3}=187.07$
Since $\alpha+\beta=k$
Where α-Number of Time moments
β - Number of Markov parameters
k - Order of reduced model

For the calculation of coefficients of numerator following table is provided

Calculation of numerator coefficients

Numerator coefficients ($c_{0}, c_{1 .}$) taking
$\alpha=1, \beta=1, r=2$
Numerator coefficients ($c_{0}, c_{1 . .}$) taking
$\mathrm{c}_{0}=\mathrm{d}_{0} \mathrm{~T}_{0}=1$
$\alpha=2, \beta=0, r=2$
$\mathrm{c}_{\mathrm{r}-1}=\mathrm{d}_{\mathrm{r}} \mathrm{M}_{0}$
$\mathrm{c}_{1}=\mathrm{d}_{1} \mathrm{M}_{0}=15.9386 \times 1=15.9386$
$\mathrm{c}_{1}=\mathrm{d}_{0} \mathrm{~T}_{1}+\mathrm{d}_{1} \mathrm{~T}_{0}$
7.6386

Thus, $2^{\text {nd }}$ order reduced transfer function is obtained as
$R(s)=\frac{7.638 \mathrm{~s}+1}{87.3466 \mathrm{~s}^{2}+15.9386 \mathrm{~s}+1}$ where $(\alpha=2, \beta=0, r=2)$
$R(s)=\frac{15.9386 \mathrm{~s}+1}{87.3466 \mathrm{~s}^{2}+15.9386 \mathrm{~s}+1}$ where $(\alpha=1, \beta=1, r=2)$
Table -4: Comparison of proposed method with other order reduction methods

Reduction methods	Reduced order system	ISE	IAE
Proposed Model	$R(s)=\frac{7.638 \mathrm{~s}+1}{87.3466 \mathrm{~s}^{2}+15.9386 \mathrm{~s}+1}$	0.001895	0.1117
Padé approx., Soloklo,2013[9]	$R(s)=\frac{6.87815 \mathrm{~s}+1.09228}{89.54625 \mathrm{~s}^{2}+12.96860 \mathrm{~s}+0.99732}$	0.01208	0.2642
Routh-Padéapprox. using harmony search,Soloklo[9]	$R(s)=\frac{7.80016 \mathrm{~s}+0.81849}{87.58712 \mathrm{~s}^{2}+12.43314 \mathrm{~s}+0.81857}$	0.0066	0.1855
Model order reduction by differentiation equation method using with Routh array Method [15]	$R(s)=\frac{2535.69 \mathrm{~s}+357.14}{2458.08 \mathrm{~s}^{2}+2196 \mathrm{~s}+360}$	6.376	4.812

Chart -1: Step response comparison of example-1 with other order reduction method.

6. CONCLUSION

Here a higher-order frequency domain system is reduced and analyzed by using the order reduction technique using improved pade approximation and routh array method.in proposed we can see that the denominator term of the given system is solved by routh array approximation and numerator term is solved by improved pade approximation. Calculated IAE and ISE of the proposed method are better than the other model order reduction technique which is shown in the above table.Both order reduction method preserves the stability of the original system after reduction, which is very important.

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 07 Issue: 06 | June 2020
www.irjet.net
p-ISSN: 2395-0072

REFERENCES

[1] D. Sambariya and R. Prasad, "Differentiation method based Stable Reduced Model of Single Machine Infinite Bus System with Power System Stabilizer," International Journal of Applied Engineering Research, vol. 7, 2012.
[2] V. Krishnamurthy and V. Seshadri, "Model reduction using the Routh stability criterion," Automatic Control, IEEE Transactions on, vol. 23, pp. 729-731, 1978.
[3] D. K. Sambariya and R. Prasad, "Routh Approximation based Stable Reduced Model of Single Machine Infinite Bus System with Power System Stabilizer," in DRDO-CSIR Sponsered: IX Control Instrumentation System Conference (CISCON 2012), Department of Instrumentation and Control Engineering, Manipal Institute of Technology (A Constitute Institute of Manipal University), Manipal576104; ISBN 978-93-82338-26-0 | © 2012 Bonfring; CIS-162; , 2012, pp. 85-93.
[4] D. K. Sambariya and R. Prasad, "Stability Equation method based Stable Reduced Model of Single Machine Infinite Bus System with Power System Stabilizer," International Journal of Electronics and Electrical Engineering, vol. 5, pp. 101-106, September 29-30, 20122012.
[5] D. K. Sambariya and R. Prasad, "Robust Power system stabilizer design for single machine infinite bus system with different membership functions for the fuzzy logic controller," in 7th International Conference on Intelligent Systems and Control (ISCO-2013) 2013, pp. 13-19.
[6] D. K. Sambariya and R. Prasad, "Routh Stability Array Method based reduced model of Single Machine Infinite Bus with Power System Stabilizer," in International Conference on Emerging Trends in Electrical, Communication and Information Technologies (ICECIT2012), ISBN-9789351070504, at Srinivasa Ramanujan Institute of Technology, Rotarypuram (V), B K Samudram (M), Anantapur (Dist). - 515701, Andhrapradesh, India., 2012, pp. 27-34.
[7] D. K. Sambariya and R. Prasad, "Stable Reduced Model of A Single Machine Infinite Bus Power System with Power System Stabilizer," IEEE, p. 154.
[8] D. K. Sambariya and R. Prasad, "Stable Reduction Methods of Linear Dynamic Systems in Frequency Domain," IEEE, p. 10.
[9] H. N. Soloklo and M. M. Farsangi, "Multiobjective weighted sum approach model reduction by routh- pade approximation using harmony search.," TURK J Elec Eng\& Comp sci, vol. 21, 2013.
[10] Satakshi, S. Mukherjee, and R. C. Mittal, "Order Reduction of Linear Time-Invariant Continuous Systems using Mixed Approach," IEEE, 2012.
[11] H. Padé, Sur la représentationapprochéed'une Function par des fractions rationelles, Ann. Sci. Ecole Norm. Sup., 9(3) (1892) 3-93.
[12]D.K. Sambariya, H.Manohar. "Model order reduction by differentiation equation method using with Routh array Method", 2016 10th International Conference on Intelligent Systems and Control (ISCO),2016.
[13] Singh, Jay, C.B. Vishwakarma, and Kalyan Chatterjee. "Biased reduction method by combining improved modified pole clustering and improved Pade approximations", Applied Mathematical Modelling, 2016.

