
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1036

A REVIEW PAPER ON UEFI SECURE BOOT

Basanagouda Venkanagoudar1, Prof. P N Jayanthi2

1Department of Electronics and Communication Engineering. RV College of Engineering. Bangalore
 Karnataka, India

2Asst Professor, Department of Electronics and Communication Engineering. RV College of Engineering. Bangalore,
Karnataka, India

---***---

Abstract - Firmware is the first piece of code to be executed
while turning on a device. The firmware attacks are nearly
undetectable giving the attacker complete access to the
system. Existing implementations based on the NIST guidelines
provide some degree of protection by detecting the executed
malicious code but it does not prohibit its execution. UEFI Safe
Boot provides full protection for user by blocking the malicious
firmware from execution through the digital signature
verification.

Key Words: BIOS, Firmware, Secure Boot, Trusted Platform
Module. NIST, UEFI

1. INTRODUCTION

Booting refers to the process of initializing the hardware.
Components of the system and also handing over the system
functionalities from the firmware to the Operating Systems
(OS). As the connectivity among the computers increased the
attacks on the operating system level also increased which
led to the development of cybersecurity domain. Due to the
advancements in the security checks at the OS level the
malicious attackers focused their interest on the
vulnerabilities in the firmware [1]. The two most widely
known attacks are bootkits and rootkits. The existing
solution based on National Institute of Science and
Technology (NIST) guidelines [1] provide protection to a
certain extent on the running of compromised firmware code
by informing the user about the execution of the tampered
code. With the introduction of the Unified Extensible
Firmware Interface (UEFI) Secure Boot these kinds of
attacks can be mitigated effectively by not executing the
unknown firmware [2].

1.1 Booting Process

Once the system is powered on, the CPU is self-initialized and
searches for a small piece of code which is normally located
on a motherboard chip. It generally loads BIOS or UEFI
firmware depending on the PC. The BIOS or UEFI firmware
initializes configurational settings from a specified location
on the processor, usually it is in CMOS battery supported
memory. Cold boot or reboot boot is verified by determining
the. Value at the memory address 0000472. The BIOS skips
the rest of POST. In cold boot it performs a POST where all
the hardware of platform are checked for the proper

functionality. The PC shows contents on the monitor
exhibiting information about the boot phases. This contains
information about the BIOS developer and version,
specification of the processor, etc. It looks for a bootloader
program in various disks like floppy, hard-disk or external
disks depending on order set. This can be changed in BIOS
menu. Once the bootloader program is found it loads the and
runs the program in RAM giving access to it. BIOS initialises
and executes Master Boot record bootstrap loader(MBR).
 MBR: It is present in the first block of the bootable disk.. Size
of MBR is generally lesser than 512B. It has 3 sections
1)bootloader information in initial 446 bytes 2) 64 bytes of
information on partition table 3) MBR verification check in
final 2 bytes. It has instructions regarding GRUB.

 Grand Unified Bootloader(GRUB):If a system has more than
one kernel images loaded, there is an option to choose which
one to be executed. It is usually performed by GRUB. Which
has info regarding Information about system file system. Is
contained in GRUB. Generally loading and running of kernel
and initrd images is performed by GRUB.

 Initrd: Kernel makes use of initrd as a initerim root
filesystem until the original is initialized. In addition it also
has essential drivers, that are required to access the
harddrive partition and other things. Initrd determines the
default init level from /etc/init tab and uses that to load all
other program.

1.2 Threats to Firmware

The increase in the security at the run level application has
made it difficult for the malware developers to get access to
the system. Malware developers found loopholes in the
firmware of the system to get access into the system.
Rootkits and bootkits are the prominent threat to the
firmware of a system. Malware present in the firmware is
highly untraceable by OS, until specific search target is
located inside the firmware. Firmware provides full acces to
the system hardware so an attacker can. Direct access to the
hardware if he manages to inject malicious code into the
firmware and can use the machine virtually without
knowledge of the system admin. However, some attacks try
to copy themselves in the system ROM allowing themselves
present even if new OS is installed or new hard disk is used.
This poses a great threat to the user data and compromising
the integrity of the system. Firmware rootkits directly

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1037

tamper with the firmware code by injecting the malicious
codes in the form of patches or by exchanging the original
firmware image itself. Bootkits on the other hand utilises the
period when firmware handovers the platform functions to
the OS usually by changing the OS loader. Bootkits and
rootkitts uses many techniques to avoid detections targeting
the firmware. A prominent example bootkit that tries steal
the user credentials necessary for the process of booting are
usually referred as “evil maid attack” indicating a situation in
which an. Unauthorized person stores a bootkit into a
system that is left freely in a hotel room, office or any
location. These kinds of attacks are generally used for
stealing credentials for the disk encryption system and third-
party security tools. Although rootkits and rootkits are a
problem for any framework, especially legacy BIOS
environments, they pose the UEFI ecosystem with a specific
challenge. The whole idea behind UEFI is to standardize the
pre-boot interface and allow for extensibility. Although this
standardization and transparency allows the device more
prone than it would have made in legacy BIOS , BIOS has less
support detection and stopping of faulty firmware code.

2. Existing Solutions

There are numerous existing software/hardware solutions
and guidelines that provide protection in the pre-booting
process. The TPM would be able to provide a provision to
have precaution between and firmware and OS during entire
booting, “Measured boot” is one of the solution which detects
the alterations in the firmware code, boot paths and settings
and collect enough information about these kind of activities
to inform the user later once after the firmware loading is
finished. These kind of solutions does not prevent malicious
firmware from executing hence the threat is imminent. NIST
of the United States government has recommended several
guidelines pertaining to the safety in pre-boot area, some of
them are “NIST 800-14-BIOS Protection Guidelines [3]”,
“NIST 800-147B. BIOS Protection Guidelines for Servers
NIST 800-155 BIOS Integrity Measurement Guidelines“

3. UEFI Secure Boot Image Validation

In UEFI Secure Boot every firmware part is validated using
digital signatures and keyring databases present in the
device. When a CPU begins, it just executes asmall number of
instruction from a specific location. Nothing has been
initialised yet. Scarcity of the rsources makes it difficult to get
stared to execute code. The system is at this point locating,
validating, installing and running a small initial piece of
firmware. This security step, as initial turn-on is called, forms
the foundation for the Root of Trust (RoT) in the UEFI Stable
Boot cycle. CPU vendors have now started testing signatures
of this initial piece of firmware to ensure that it has not been
inappropriately updated and to ensure a strong start to the
trust chain. The Chain of Trust used in UEFI Secure Boot
flows from the very stable basis. The trust is preserved via a
public key cryptography. Hardware manufacturers put in the

firmware e store the Platform Key (PK), reflecting the RoT.
The relationship of confidence with operating system
vendors and others is recorded by using the Platform Key to
sign their keys. The flow of image validation in secure boot in
shown in fig 1

Fig -1: Image validation in secure boot.

4. Signature and Key Maintainance

A set of databses, keys are employed for the protection and
maintenance of digital signature that are necessary to
validate the code prior to its compilation. Platform key (PK)
is the primary key. It is usually generated by the original
equipment producer when a system is produced. It can be
replaced by the end user if and only if he knows the original
platform key. “Key Exchange Key(KEK)” ensures the
protection of the key database db and dbx containing the
digital keys from unintentional alterations. The signature
databases only be modified if the private part of the key
exchange key is known to the user. There can be more than
one KEKs supplied by the OS and some of the third-party
application developers. User with a correct key exchange key
able to modify the signature databases. Key exchange key
protects two databases namely, db which contains all the
keys are allowed to authenticate the code and dbx that
contains the blocked signatures that contains the signatures
that forbidden to authenticate. As the boot phase continues
from an initial secured firmware, additional parts of code
and drivers given by peripheral suppliers will be loaded and
executed for enabling their devices. This process finally
results in loading and running the OS bootloader which sets
up the OS. The digital key is verified by the firmware from its
db, as each section of code is loaded and prior to execution,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1038

but also the digital key is absent in dbx. Including the boot
loader of the OS itself. How the firmware does with signature
matching details is a policy judgment, and is not decided by
the specification. Unauthorized code is not allowed to be
executed, and thus the program will not be able to finish the
OS bootstrap phase.

5. Conclusion

The possible threat to device firmware security can be
through rootkitts or bootkitts . They are in existence since
the beginning of the PC’s. Since other possible threats of
attack were restricted and system firmware development
became more versatile and reliable, the pre-boot arena
became a prime objective for the malicious developers to get
access to the system. UEFI Secure Boot was designed to
make the systems less vulnerable to these attacks

REFERENCES

[1] V. Z. M. Krau. (2019). “Establishing the root of trust,”

[Online]. Available: https:
//uefi.org/learning_center/papers/.

[2] B. R. Richard Wilkins. (2019). “Uefi secure boot in
modern computers,” [Online]. Available:
https://uefi.org/learning_center/papers/.

[3] A. Regenscheid, “Platform firmware resiliency
guidelines,” Tech. Rep., May 2018. doi:
10.6028/nist.sp.800-193

