
 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 06 | JUNE 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7628

HYBRID CLOUD TECHNOLOGIES: DOCKERS, CONTAINERS AND

KUBERNETES

Eshwari H M1, Prof. Rekha B S2, Dr. G N Srinivasan3

1Student, Department of Information Science and Engineering, RV College of Engineering,
Bengaluru, India.

2Research Scholar, Bharathiar University, Coimbatore, Tamil Nadu, India.
3Professor Department of Information Science and Engineering, RV College of Engineering,

Bengaluru, India.
--***---

ABSTRACT: Dockers, Containers and Kubernetes has
transformed the era of modern software development
techniques using cloud technologies or DevOps techniques.
Advancements in the cloud technology has transferred the
concept of virtualization by providing an alternative for
the hypervisors. Docker is used to create, deploy and run
any application in any environment by creating an image
of the application. Containers are running instances of
image that are isolated and have their own set of
processes. Kubernetes is an open-source platform that
provides a dashboard to manage the deployed containers
and also to scale up the resources if required. This paper
provides an overview of the modern cloud technologies
like docker, containers and Kubernetes and also explains
how these techniques can be used to containerize an
application.

Keywords: Dockers, Containers, Kubernetes, Helm
Charts, Containerization and Virtualization.

1. INTRODUCTION

Any Software development process involves setting up

an End-to-End stack which includes various services like

a web server, a database, a messaging system and an

orchestration tool like ansible. There will be a lot of

issues while integrating these different components. The

developer should ensure that all these components have

the compatibility with the underlying Operating Systems

and also the compatibility of service libraries and the

dependencies with the OS. A new developer may find

difficulty in setting up the development environment. We

also have developers who use different OS in which they

are comfortable with. So, there is no guarantee that an

application which is built in one environment

(development/Test) would work in other environments.

With dockers we can run all these services in different

containers with its own libraries and dependencies all on

the same Virtual Machines and Operating System but in

different containers reducing the overhead caused by

virtualization. Containers are isolated environments.

They can have their own processes or services, their own

networking interfaces like virtual machines except that

they all share the same OS kernel.

Kubernetes is nothing more than a container-

management framework. It may be docker containers or

other alternative containers. Kubernetes orchestrates,

administers and forms a communication line between

these containers.

2. VIRTUALIZATION VS CONTAINERIZATION

Virtualization lets you run multiple operating systems on

a single physical server's hardware, while

containerization lets you install multiple applications on

a single virtual machine or server using the same

operating system.

In case of virtual machines, the services such as node-js,

mongo DB, Redis or even another operating system

needs a fixed allocated memory. The Hypervisors

(software used to create virtual machine) are installed

above existing operating system and for each required

component a virtual environment will be created using

hypervisor. Each virtual machine will have its own

operating system inside it. On top of this the required

libraries and the dependencies would be running. This

overhead causes the higher utilization of the underlying

resources and also consume higher disk space as each

VM is heavy and is usually in giga bytes (GB) in size. So

usually these machine takes more time to boot as it

needs the entire OS to boot.

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 06 | JUNE 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7629

Figure 1: Virtualization vs Containerization

In case of Containerization we have the dockers installed

on the Operating system and since the containers which

contains the required services such as node-js, mongo

DB, Redis or even another operating system runs on top

of Dockers there is no need to create a separate VM’s for

each component. The container of a particular

component will have its own libraries and dependencies.

This reduces the requirement for RAM and CPU

resources and reduces the wastage of memory. Docker

Containers are usually light weight and are usually in

megabytes (MB) in size. Because of this reason Dockers

take less time to boot up.

3. RELATED WORKS

Maciej Gawel and Krzysztof Zielinski et.al [1] this paper

discusses elements of the MANO specification with basic

mechanisms of Kubernetes containers orchestration. It

assesses the degree to which Containerized Network

Functions (CNFs) can be handled using Kubernetes

platform. To validate the study, an outstanding virtual IP

Multimedia Network is used to perform a series of stress

and chaos tests on the Kubernetes testbed. The authors

concluded that in the area of performance and fault

management, Kubernetes can natively meet performance

constraints and fundamental requirements imposed by

MANO standard. The experiments conducted confirmed

that Kubernetes offers important mechanisms for ability

to auto scale and self-heal.

Sachchidanand Singh and Nirmala Singh et.al [2] this

paper highlights Container based virtualization and

Docker's role in shaping Cloud technology's future. The

authors says that Container adoption will continue to

grow and in the future, the majority of Microservice

applications will be based on the containers.

Marcel Großmann and Andreas Eiermann et.al [3] In this

paper, a vitality-convincing strategy has been conveyed,

Hypriot Cluster Lab (HCL), which changes Dockers

moves to keep running on single board PCs fuelled by

ARM. In this, the authors demonstrate how HCL works

through techniques for large area systems with

plenitude and replication between a couple has on

different locations. Similarly, they use a job assigned to

virtual private LANs to communicate between coursed

with encoded correspondence over the Internet. Result

shows that tolerant, strong and stable changes are

opposed in order to combine two or three self-decisions

with HCL to satisfy the QoS needs.

Devki Nandan Jha, Saurabh Garg, Prem Prakash

Jayaraman, Rajkumar Buyya, Zheng Li, Rajiv Ranjan et.al

[4] this paper presented the experimental research on

performance evaluation of Docker containers running a

heterogeneous collection of microservices

simultaneously. Following CEEM (Cloud Evaluation

Experiment Methodology) they conducted a detailed

series of experiments to test the interference between

containers running either competing or independent

microservices. Authors also looked at the consequences

of limiting a container's resources by specifically

defining the cgroups.

4. DOCKER AND CONTAINER

Docker is a collection of (PaaS) products which use

virtualization at the OS level to deliver software in

packages called containers. Containers are separated

from each other and they contain their own applications,

libraries and configuration files; they can interact

through well-defined channels with each other. All

containers are operated by a single operating system

kernel, and are therefore lighter than virtual machines.

Docker Engine is the program which hosts the

containers. Docker can package an application in a

virtual container that can run on any Linux server. This

helps to provide flexibility and portability that allows the

application to run at different locations, whether on-site,

in a public cloud or in a private cloud.

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 06 | JUNE 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7630

Figure 2: Docker with Interfaces Using Linux Kernel

Docker uses the Linux kernel resource isolation features

(such as cgroups and kernel namespaces) and a union-

capable file system (such as OverlayFS) to enable

containers to run within a single Linux instance, avoiding

the overhead of virtual machine start up and

maintenance. Because the Docker containers are

lightweight, several containers can be run

simultaneously by a single server or virtual machine.

Support for namespaces by the Linux kernel mostly

isolates the operating environment view of an

application, including process trees, network, user IDs

and mounted file systems, while memory and CPU

resource limits are provided by kernel groups. Figure 2.

Shows Docker interfaces using Linux kernel.

Docker uses images to create containers. An image is a

package or template which is used to create one or more

containers, containers are running instances of image

that are isolated and have their own set of processes.

Containers are fast, reliable and makes use of less space.

For example, if an application requires latest version of

ubuntu, then we can pull the image from the docker hub

using the command “docker pull ubuntu” which will

fetch the latest ubuntu from the docker hub if the image

is not present in the local repository. Figure 3 shows the

working of docker. Developer issues the docker

commands using the command line. If the required

image is already loaded, then docker uses the local

version else the image will be downloaded from the hub.

Figure 3: Working of Docker.

In order to create a container of an image we issue the

“docker run” command. To list the available images in

the local repository issue “docker images” command.

Figure 4 shows all the available images. To know the list

of running containers execute “docker ps” command.

Figure 5 shows all the running containers.

Figure 4: Available images

Figure 5: All Running Containers

Basic Docker Commands:

 docker ps

 docker run ImageName

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 06 | JUNE 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7631

 docker start ContainerName/ID

 docker stop ContainerName/ID

 docker pause ContainerName/ID

 docker unpause ContainerName/ID

 docker stats ContainerName/ID

 docker kill ContainerName/ID

 docker rm ContainerName/ID

 docker history ImageName/ID

To create an image of an application Docker Files are

used. It is a text file with instructions to build an image

Automation of Docker Image Creation. The “docker

build” command builds the image and the “docker push”

command pushes the created image to the docker hub.

Figure 6: Jenkins Page

Figure 7: A Jenkins Job

Figure 6 and figure 7 shows the Jenkins application that

is running on a container as Administrator. Jenkins

application is used to continuously test and build the

software projects which makes it easy for the developer

to integrate the changes in the project. By using dockers

and containers the web application could be started

easily using the image available in the hub.

5. KUBERNETES

Kubernetes is a scalable open-source, extensible

framework for managing containerized workloads and

services that enables both declarative configuration and

automation. It has a broad ecosystem, rising rapidly.

Services, support and software offered by Kubernetes

are widely accessible. Containers are a good way to get

your applications bundled and run. You need to manage

the containers running the applications in a production

environment, and ensure that there is no downtime. This

is provided by Kubernetes. It takes care of scaling and

failover, as the framework offers templates for

deployment, and more. Kubernetes for instance can

easily manage a system canary deployment.

Figure 8: Kubernetes Orchestration System

Architecture

Figure 8 shows the Kubernetes architecture.

Node: A node is also a worker machine in which

containers are deployed by Kubernetes. Since the

application that is running on a node may fail, we need to

have more than one node.

Cluster: A cluster is a set of nodes grouped together. So

if one node fails, still the application will be accessible

from other nodes. Moreover, having multiple nodes

helps in sharing load of the website.

Kubernetes Master: Master node is a machine

(physical/virtual) in which Kubernetes is installed and

configured as master. The master watches over the

cluster of nodes and is responsible for actual

orchestration of worker node in the cluster. They help in

managing the cluster. When a node fails, the workload of

the failed node is moved to other worker nodes using

master.

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 06 | JUNE 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7632

API-Server: API server acts as a front end for Kubernetes.

The users, management devices, command line interfaces

all talk to the API to interact with the Kubernetes cluster.

ETCD Service: ETCD is a distributed, reliable key-value

store used by Kubernetes to store all data used to manage

the cluster. They are responsible for implementing the

locks on the cluster to ensure that there are no conflicts

within the masters.

Kubelet Service: Kubelet is an agent that runs on each

node in the cluster. The agents are responsible to make

sure that the containers are running on the cluster as

expected.

Controller: The Controllers are the brain behind the

Orchestration. They are responsible for noticing and

responding when nodes, containers, or an end-point goes

down. They make decisions to bring up new containers in

such cases.

Scheduler: The scheduler is responsible for distributing

the work on containers across multiple nodes. It looks for

newly created containers and assigns them to nodes.

Pod: Kubernetes does not deploy the container directly

on a worker node. The containers are encapsulated into a

Kubernetes object known as Pods. A pod is a single

instance of an application and is the smallest object that

we can create in Kubernetes.

Minikube is a miniature version of Kubernetes that can be

installed on the client to access Kubernetes. The

“minikube start” command starts the kubernetes cluster.

Figure 9 shows the result of the command. Kubernetes

uses yaml files as input for creating objects such as pods,

services deployments.

Figure 9: Result of minikube start

To get all the kubernetes objects such as pods, services,

deployments etc. that is running on a cluster, use

“kubectl get all” command. Figure 10 shows the output of

the command.

Figure 10: The kubernetes objects.

Figure 11 shows the dashboard visualization of the

kubernetes objects running on a container.

Figure 11: GUI to manage clusters.

Figure 12 shows the yaml file to deploy Jenkins on the

kubernetes cluster. It is of kind deployment. Figure 13 is

the yaml file that deploys a service.

Services allow interaction between different components

within and outside the application.

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 06 | JUNE 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7633

Figure 12: YAML file

Figure 13: YAML file for Services

Figure 14: Jenkins running on Kubernetes

6. CONCLUSION

Dockers, Containers and Kubernetes work at different

levels [11]. Docker uses containerization technology to

create various containers. Kubernetes provides a user

interface to manage these containers. Using Kubernetes,

we can scale up or scale down the resources at a very

fast rate. This paper gives an overview of modern cloud

technologies and also shows some of the outputs

obtained by using dockers, containers and Kubernetes.

This paper also talks about virtualization and

containerization and gives an overview of the basic

docker, container and Kubernetes commands that can be

used to containerize the application.

7. REFERENCES

1) Maciej Gawel and Krzysztof Zielinski
“Analysis and Evaluation of Kubernetes
based NFV management and orchestration”,
12th International Conference on Cloud
Computing (CLOUD), IEEE, 2019.

2) Sachchidanand Singh and Nirmala Singh
“Containers & Docker: Emerging Roles &
Future of Cloud Technology”, IEEE, 2016.

3) Marcel Großmann and Andreas Eiermann,
“Automated Establishment of a Secured
Network for Providing a Distributed
Container Cluster”, 2016 28th International
Teletraffic Congress - The First
International Conference in Networking
Science & Practice.

4) Devki Nandan Jha, Saurabh Garg, Prem
Prakash Jayaraman, Rajkumar Buyya, Zheng
Li, Rajiv Ranjan, “A Holistic Evaluation of
Docker Containers for Interfering
Microservices”, International Conference on
Services Computing, IEEE, 2018.

5) M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen,
and M. Villari, “Open Issues in Scheduling
Microservices in the Cloud,” IEEE Cloud
Computing, vol. 3, no. 5, pp. 81–88, 2016.

6) Douglas Bourgeois, David Kelly, Thomas
Henry, “Cloud Native Applications- The
Intersection of Agile Development and
Cloud Platforms”, Deloitte Touche Tohmatsu
Limited, 2016.

7) Ms. Shalini Joshi, Dr. Uma Kumari, “Load
Balancing in Cloud Computing:
Challenges&Issues”,2016 2nd International
Conferenceon Contemporary Computing
and Informatics (ic3i).

8) Mahfooz Alam and Zaki Ahmad Khan,
“Issues and Challenges of Load Balancing
Algorithm in Cloud Computing
Environment”, Indian Journal of Science and

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 06 | JUNE 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7634

Technology”,Vol10(25),
DOI:10.17485/ijst/2017/v10i25/105688,
July 2017.

9) Charanjeet Singh and Amandeep Kaur, “A
review on different approaches of load
balancing in cloud computing”, International
Journal of Science and Research (IJSR), v5,
2013.

10) ZHANG Yan-huaa, Feng Leia, Yang Zhia,
“Optimization of Cloud Database Route
Scheduling Based on Combination of Genetic
Algorithm and Ant Colony Algorithm”,
Science direct, Procedia Engineering 15
(2011), pp. 3341 – 3345.

11) Lecture slides of “Cloud Computing for
Network Engineers” by Dr. Scott Kingsley,
SMU, 2018.

12) “Docker.” [Online]. Available:
https://www.docker.com.

13) Lecture slides of “Cloud Computing for
Network Engineers” by Dr. Scott Kingsley,
SMU, 2018.

https://www.docker.com/

