
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 06 | June 2020                  www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 6687 
 

IMAGE CLASSIFICATION USING PYTORCH 

ABHISHEK PANDEY 

Final year student, Department of Computer Science and Engineering, Inderprastha Engineering College, Dr.A.P.J 
Abdul Kalam Technical University. 

----------------------------------------------------------------------***---------------------------------------------------------------------

Abstract - This paper presents image classification using 
pytorch in 2020. Pytorch is the newest tool in python for 
image classifying with a high accurate results. 
 
PyTorch is currently the hottest Deep Learning library out 

there. In terms of popularity, it has even taken over 

Tensorflow. Tensorflow came before PyTorch and is backed 

by the engineering and marketing might of Google.   

 

Key Words:  Classification; Clustering; Learning; MLP; 
SOM; Supervised learning; unsupervised learning 
 

1 INTRODUCTION  
 
Image classification refers to the task of extracting 

information classes from a multiband raster image. The 

resulting raster from image classification can be used to 

create thematic maps. Depending on the interaction 

between the analyst and the computer during 

classification, there are two types of classification: 

supervised and unsupervised. With the ArcGIS Spatial 

Analyst extension, there is a full suite of tools in the 

Multivariate tools to perform supervised and 

unsupervised classification. The classification process is a 

multi-step workflow, therefore, the Image Classification 

toolbar has been developed to provide an integrated 

environment to perform classifications with the tools. Not 

only does the toolbar help with the workflow for 

performing unsupervised and supervised classification, it 

also contain additional functionality for analysing input 

data, creating training samples and signature files, and 

determining  the quality of the training samples and 

signature files. The recommended way to perform 

classification and multivariate analysis is through the 

Image classification toolbar. 

 

1.1 Build a pytorch CNN model 
 
Convolution neural networks(CNNs) is the most popular 
neural network model being used for image classification 
problems. The big idea behind CNNs is that a local 
understanding of an image is good enough. The practical 
benefit is that having fewer parameters greatly improves 
the time it takes to learn as well as reduces the amount of 

data required to train the model. Instead of a  fully 
connected network of weights from each pixel, a CNN has 
just enough weights to look at a small patch of the image. 
It’s like reading a book by using a magnifying glass, 
eventually, you read the whole page, but you look at any a 
small patch of the page at any given time. 
 

1.2 CNN ARCHITECTURE 
 
Self-Organizing neural networks learn to use unsupervised 

learning algorithms to identify hidden patterns in 

unlabelled input data. This unsupervised refers to the 

ability to learn and organize information without 

providing an error signal to evaluate the potential 

solution. The lack of direction for the learning algorithm in 

unsupervised learning can sometime be advantageous, 

since it lets the algorithm to look back for patterns that 

have not been previously considered. The main 

characteristics of Self-Organizing Maps (SOM) are: 

 

1. It transforms an incoming signal pattern of arbitrary 

dimension into one or 2 dimensional maps and perform 

this transformation adaptively 

2. The network represents feed forward structure with a 

single computational layer consisting of neurons arranged 

in rows and columns. 

3. At each stage of representation, each input signal is kept 

in its proper context and, 

4. Neurons dealing with closely related pieces of 

information are close together, and they communicate 

through synaptic connections. 

 

The computational layer is also called a competitive layer 

since the neurons in the layer compete with each other to 

become active. Hence, this learning algorithm is called a 

competitive algorithm. Unsupervised algorithm in SOM 

works in three phases: 

 

Competition phase: for each input pattern x, presented to 

the network, inner product with synaptic weight w is 

calculated and the neurons in the competitive layer finds a 

discriminant function that induce competition among the 

neurons and the synaptic weight vector that is close to the 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 06 | June 2020                  www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 6688 
 

input vector in the Euclidean distance is announced as 

winner in the competition. That neuron is called best 

matching neuron, i.e. x = arg min ║x - w║. 

Cooperative phase: the winning neuron determines the 

center of a topological neighborhood h of cooperating 

neurons. This is performed by the lateral interaction d 

among the cooperative neurons. This topological 

neighborhood reduces its size over a time period. 

 

Adaptive phase: enables the winning neuron and its 

neighborhood neurons to increase their individual values 

of the discriminant function in relation to the input 

pattern through suitable synaptic weight adjustments, Δw 

= ηh(x)(x – w). 

 

Upon repeated presentation of the training patterns, the 

synaptic weight vectors tend to follow the distribution of 

the input patterns due to the neighborhood updating and 

thus ANN learns without supervision. 

 

Self-Organizing Model naturally represents the neuro-

biological behavior, and hence is used in many real world 

applications such as clustering, speech recognition, texture 

segmentation, vector coding etc. 

 

A typical cnn architecture look like below: 

 
Fig 1: cnn architecture 

 

CNN models may differ based on how they are trained 

with each and every different case. 

 
 

Fig 2: cnn architecture 

 

 

 

1.3 Basic cnn layer 

And in order to build a “deep” neural network, we can 

stack several layers like the one built in the previous 

section. To show the reader how to do it in our example, 

we will create a second group of layers that will have 64 

filters with a 5×5 window in the convolutional layer and a 

2×2 window in the pooling layer. In this case, the number 

of input channels will take the value of the 32 features that 

we have obtained from the previous layer, although, as we 

have seen previously, it is not necessary to specify it 

because Keras deduces it: 

 
Fig 3: basic cnn model 

2.  STRIDES 
The amount of the movement between applications of the 

filter to the input image is referred to as the strides, and it 

is almost always symmetrical in height and width 

dimensions the default strides or stride in two dimensions 

is (1, 1) for the height and the width movement, 

performed when needed. And this default works well in 

most cases. The strides can be changed which has an effect 

both on how the filter is applied to the image and, in turn, 

the size of the resulting feature map. 

 

for example, the stride can be changed to (2,2).this has the 

effect of moving the filter two pixels right for each 

horizontal movement of the filter and two pixels down for 

each vertical movement of the filter when creating the 

feature map. 

 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 06 | June 2020                  www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 6689 
 

 

fig 4. strides 

3. Padding  

Padding ensures that there is no loss of information while 

an image with a convolution kernel 

 

 

4.  MAX POOLING 

Max pooling layer primarily reduces the dimensionality of 

the input. 

 
Fig 5 max pooling 

 

5. UNDERSTANDING COMPUTATIONAL 

GRAPHS 

At the bottom of every Deep Neural Network training, 

there are only two things taking place, 

1. A forward pass - pushing images/data from the 

start of the network and generating an output 

(and a loss/error). 

2. Backpropagation - essentially a backward pass 

where we calculate gradients 

using partial derivatives with respect to the loss, 

and make changes to the weights of the network. 

In a nutshell, this is how deep learning networks 

train. 

 

The image above, is a simple neural network. But it is also 

a computational graph. We first make a forward pass 

through our network and then a backward pass to 

calculate how much loss was being contributed by W1 

weight in particular. Every neural network you define, 

PyTorch sees it as a computational graph similar to what 

we see above and keeps a track of all the operations 

performed by every node. This ensures that it calculates 

accurate gradients when making a backward pass. Good 

thing about PyTorch is that it creates these computational 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 06 | June 2020                  www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 6690 
 

graphs on the fly! And this aspect makes PyTorch and 

extremely flexible (and pythonic) deep learning library. 

 

 

5. UNDERSTANDING OVERFITTING 

One of the problems that occur during neural network 

training is called overfitting. The error on the training set 

is driven to a very small value, but when new data is 

presented to the network the error is large. The network 

has memorized the training examples, but it has not 

learned to generalize to new situations. 

 

 

 

6. RESULT AND CONCLUSION 

Pytorch has changed the image classification and made the 

image resolution to be deeper resolved than earlier 

libraries. 

7. REFERENCES 

https://colab.research.google.com/github/pranjalchaubey

/Deep-Learning-

Notes/blob/master/PyTorch%20Image%20Classification

%20in%202020/Image_Classification_practice.ipynb#scr

ollTo=hakTX49k5wnW 

 

 

 

https://colab.research.google.com/github/pranjalchaubey/Deep-Learning-Notes/blob/master/PyTorch%20Image%20Classification%20in%202020/Image_Classification_practice.ipynb#scrollTo=hakTX49k5wnW
https://colab.research.google.com/github/pranjalchaubey/Deep-Learning-Notes/blob/master/PyTorch%20Image%20Classification%20in%202020/Image_Classification_practice.ipynb#scrollTo=hakTX49k5wnW
https://colab.research.google.com/github/pranjalchaubey/Deep-Learning-Notes/blob/master/PyTorch%20Image%20Classification%20in%202020/Image_Classification_practice.ipynb#scrollTo=hakTX49k5wnW
https://colab.research.google.com/github/pranjalchaubey/Deep-Learning-Notes/blob/master/PyTorch%20Image%20Classification%20in%202020/Image_Classification_practice.ipynb#scrollTo=hakTX49k5wnW
https://colab.research.google.com/github/pranjalchaubey/Deep-Learning-Notes/blob/master/PyTorch%20Image%20Classification%20in%202020/Image_Classification_practice.ipynb#scrollTo=hakTX49k5wnW

