
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6504

Silveri Anvesh1

1M.S, Dept. Of ECE Engineering, VEDAIIT, Andhra Pradesh, India.
---***--
Abstract - With the growth of the personal computers and
the internet, computers are now integrated into our lives. The
advancement of technology is leading to data threats and
security issues. A hacker may gain access to our most secret
information by breaking through our firewall and gaining
access to the internals of our computing system even though
he is physically present somewhere else. Compromised
computers may leak our most private information: personal
documents, pictures and movies, browsing history, chat
history, bank account passwords, etc.

A persistent problem for modern System-on-Chip is their
vulnerability to code injection attacks. By tampering the
memory content, attackers are able to extract secrets from the
SoC and to modify or deny the SoC’s operation. This work
proposes secure, and fast method to check the integrated data
is safe or not present in Memory. All applications that need
high security should be immune to both physical and software
attacks through the secure architectures. Memory integrity
verification is a major and important issue while
implementing secure processors. This paper proposed a
method to ensure data integrity.

 Key Words: Memory Integrity, data integrity, encryption,
decryption.

1. INTRODUCTION

1.1 Data Integrity

Data integrity is the accuracy, completeness, and consistency
of information. Data integrity also refers to the safety of data
in regards to regulatory compliance and security. When the
integrity of data is preserved, the information stored in
memory will remain similar and reliable no matter how long
it’s stored or how frequent it is accessed. Data integrity also
ensures that your data is safe from un-authenticated users or
hackers. When the information which is sensitive is
exchanged, the receiver must have the confirmation that the
message has come intact from the correct sender and isn’t
modified by the hacker. There are two kinds of data integrity
threats, they are passive and active.

1.1.1 Passive Threats

This type of threats exists because of changes in data. These
data errors are likely to occur because of noise in an
exceedingly communicating. Also, the information may get
corrupted while the file is stored on a disk. Error correcting
codes and straight forward checksums like Cyclic

Redundancy Checks (CRCs) are accustomed detect the loss of
information integrity. In these techniques, a digest of
information is computed mathematically and appended
to the information.

1.1.2 Active Threats

In this type, an attacker can alter the data with malicious
data. In other Words, if data is without digest, it is going to
be converted without notice. The system appends CRC to
information for knowing any changes. At higher level of
threat, attacker may alter data and replaces with other digest
for altered data from exiting digest. This can be possible if
the digest is computed using mechanisms such as CRC.
Hashing and Encryption are extremely used in verifying the
data integrity and for maintenance of security.

1.2 Hashing

Hash functions are very useful and exist in all security
applications. A hash function is a mathematical function
that converts a numerical input value to other coded
numerical value. The input to the hash function is arbitrary
length but output of hash function is always of same length.

Values delivered by a hash function is called message
digest or hash values. The following picture shows hash
function –

Fig -1: Hashing function

Features of Hash Functions:

The typical features of hash functions are −

Fixed Length Output (Hash Value)

 Verification of Data Integrity using MD5 Hashing Function

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6505

 Hash function converts data of arbitrary length to a
pre-defined length. This process is usually referred
to as an hashing of the information.

 Generally, the hash value is way smaller than the
input plain-text data, hence hash functions can be
called as compression functions.

 Since a hash is a representation of a larger data, it is
also referred to as a digest.

 Hash function with n bit output is called as an n-bit
hash function. Popular hash functions will generate
hash values between 160 and 512 bits.

Efficiency of Operation

 Generally for any hash function h with input x,
computation of h(x) is a fast operation.

 Computationally hash functions are way faster than
a symmetric encryption.

Properties of Hash Functions:

In order to be an effective cryptographic tool, the hash
function is desired to possess following properties −

Pre-Image Resistance

 This property means it should be computationally
hard to reverse a hash function.

 In simpler words, if a hash function h produced a
hash value z, then it should be a difficult to figure
out any input value that hashes to z.

 This property secures against an hacker who has a
hash value and is willing to decoed the input data.

Second Pre-Image Resistance

 This property indicates given an input value and its
hash value, it should be impossible to find a
different input plain-text data with the identical
hash value.

 In other words, if a hash function h for an input x
produces hash value h(x), then it should be difficult
to find other input value y such that h(y) = h(x).

 This property of hash function secures against an
hacker who has an input value and its hash, and
wants to substitute different value as legitimate
value instead of original input value.

Collision Resistance

 This property means it should be very difficult to
trace out two different inputs of any length that
results in similar hash value. This property is also
called as collision free hash function.

 In other words, for a hash function h, it’s difficult to
trace any two different inputs x and y so that h(x) =
h(y).

 Since, hash function is compressing function with
pre-defined hash length, it’s possible for a hash
function to occur collisions. This property of
collision free only confirms that these collisions
should be hard to trace out.

 This property makes it difficult for an hacker to
trace two input values with the same hash value.

 If a hash function is collision-resistant then it is
second pre-image resistant.

1.3 Encryption

Encryption is a way of altering information so that only
authorized users can be able to understand the information.
In technical terms, it is a process of converting plain-text
data to cipher-text data. In other words, encryption takes
readable data and changes it to the random data. Encryption
uses an encryption key: a collection of mathematical values
that both the sender and receiver of an encrypted message
know.

Although encrypted data appears random, encryption
proceeds in a exceedingly logical, predictable way, so a user
receiving the encrypted data and in possession of the key
used to encrypt the data can decrypt the information,
turning it back into plain-text data. Truly secure encryption
will be complex enough that a 3rd party is extremely
unlikely to decrypt the cipher-text by brute force – in
simpler words, by trial and error method.

The two popular methods of encryption are symmetric
encryption and asymmetric encryption. Asymmetric
encryption is additionally called as public key encryption.

In symmetric encryption, only one key is present, and all
users use the similar key for encryption and decryption. In
asymmetric, or public key, encryption, two keys are present -
one key is for encryption, and a different key is for
decryption. Either key can be used for either action, but data
encrypted with the first key can’t be decrypted with the
same key, and vice versa. One key is kept private, while one
key is shared to all, for anyone to use – hence the name
public key.

1.4 Decryption

Decryption is the process of converting information that has

been converted to unreadable using encryption back to its

unencrypted form. In decryption, the system extracts and

converts the garbled data and transforms it to texts and

images that are easily understandable to the end user.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6506

Decryption may be accomplished manually or automatically.

It may also be performed with a set of keys or passwords.

One of the main reasons for implementing an encryption-

decryption system is for keeping data securely. As

information travels over the internet, it can be accessed from

unauthorized users. So, data is encrypted to reduce

information loss. Some of the common items that are

encrypted include email messages, text files, images, user

data and directories. The person in charge of decryption

receives a prompt or window in which a password may be

entered to access encrypted information.

2. HASHING ALGORITHM – MD5

2.1 Design of Hashing Algorithm

Hashing is a mathematical function that operates on two

fixed-size blocks of information to form a hash code. This

hash function forms a part of the hashing algorithm.

The size of every data block varies based on the algorithm.

Typically the block size varies from 128 bits to 512 bits. The

following illustration figure1 shows hash function –

Fig -2: Design of Hash Value

Hashing algorithm involves rounds of above hash function
like a block cipher. Each round takes an input of a fixed size,
typically a combination of the most recent message block
and the output of the last round.

This process is repeated for many rounds as required to
hash the entire message. Schematic (figure2) of hashing
algorithm is depicted in the following illustration –

Fig -3: Schematic of Hashing algorithm

Since, the hash value of first message block becomes an
input to the second hash operation, output of which
changes the results of the third operation, and so on. This
effect is named as an avalanche effect of hashing.

Avalanche effect produces different hash values for two
messages that differ even by a single bit.

There's a difference among hash function and hash
algorithm. The hash function generates hashes by taking
inputs of two blocks of fixed-length binary data, where as
Hashing algorithm is a method of using an hash function,
specifying how the message will be broken up and how the
results from previous message blocks are added together.

Cryptographic hash functions take data input and generates
a pre-defined size result or digest. That result is called
check some. It is not possible to trace an input from the
result of hash function. One thing is that the hash functions
are not encryption because we can't decrypt an input from
the output.

Cryptographic hash Function is MD5 is one of the reputed
hashing technique. MD5 creates a 128-bit message digest
from the data input which is in 32 digits hexadecimal
number. MD5 hashes are unique for different inputs
irrespective of the size of the input. MD5 hashes looks like
this.

When processor wants to store data in an external memory,
which we assume as untrusted part, we have to make sure
that data we wrote in the memory is not manipulated by the
un-authenticated user, this is possible by using hashing
technique.

Message Digest (MD) – A Hashing Function:

MD5 was most prefered and widely used hash function for
few years.

• The MD comprises of hash functions MD2, MD4,
MD5 and MD6.It is a 128-bit hash function.

• MD5 have been widely used in the security world
to provide the integrity of the information.

• In 2004, collisions were found in MD5. An attack
have been successfully hacked the confidential
information only in an hour. This collision attack
resulted in compromised MD5 and hence it is no
longer recommended to be used for security.

MD5 generates a 128bit hash value from the input. The
output must be unique from other hash values. Assume a b-
bits message to digest. To digest this message 5 steps have
to be followed. Professor Rivest used the first two steps to
prepare the input for digestion by appending and padding
its bits. In the third and fourth step he used few helper

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6507

functions which have 4 word buffers and 4 auxiliary
functions which are already initialized.

2.2 Append Padding Bits

The first step is to extend the B-bits input so that the length of
the message is equal to 448, modulo 512. In simpler words,
message should be just 64-bits shy of being a multiple of 512
that is after padding the message+64 bit should be divisible
by 512. (Message+64)/512 will have reminder 0. No matter
the size of the message padding is always done. First a '1' bit
is appended to the message and then a series of ’0’ bits have
to be appended.

Fig -4: Message Structure

Fig -5: How bits are appended

2.3 Append Length

Now, take the original message and make 64-bit
representation of the original B-bit message. We append
this to the result of previous step. Now the message has
length that is multiple by 512. Which itself is divisible by 16.
The message is divided into blocks, each block of 512 bits
each. Each 512 bits block have been divided into 16 words
of 32-bits each. We denote the words as M[0.....N-1] where N
is a multiple of 16.

2.4 MD5 Helper Functions

The Buffer:
MD5 uses a buffer which is made up of four words, each 32
bit long. These words are called A, B, C, D. They are
initialized as
word A: 01 23 45 67
word B: 89 ab cd ef

word C: fe dc ba 98
word D: 76 54 32 10
The Table:

MD5 further uses a table K which has 64 elements. Element
number i is indicated as Ki. The table is computed in advance
to speed up computations. Elements are computed with a
mathematical sin function:
Ki = abs(sin(i + 1))*232

2.5 Four Auxillary Functions

In addition MD5 uses 4 auxiliary functions that each takes

as ‘3’ 32-bit words as input and produce as ‘1’ 32-bit word

as output. They apply and, or, not and xor logical operators

to the input bits.

F(X,Y,Z) = (X and Y) or (not(X)and Z)

G(X,Y,Z) = (X and Z) or (not(Z)and Y)

H(X,Y,Z) = (X xorYxor Z)

I(X,Y,Z) = Y xor (not(Z)or X)

2.6 Processing Blocks

The contents of the 4 buffers(A,B,C,D) are mixed with
the words of input, using the four auxiliary
functions(F,G,H,I).There are four rounds, each round
involves 16 basic operations. One operation is
illustrated in figure6 below:

The figure6 shows how an auxiliary function F is
applied to the four buffers(A,B,C,D),using message
word Mi and constant Ki. The item “<<<s” denotes a
binary left shift by s bits.

Fig -6: Application of auxillary function F

The Output

After all the rounds have been performed, the buffers
A,B,C,D contain the MD5 digest of the input message.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6508

3. AES ENCRYPTION AND DECRYPTION
ALGORITHMS

The widely known and adopted symmetric encryption
algorithm likely to be encountered nowadays is
the Advanced Encryption Standard (AES). It is six times
faster than triple DES. There is a need to replace DES as its
key size was too small. With increasing computing power, it
absolutely was considered vulnerable against exhaustive
key search attack. Triple DES was designed to beat this
drawback but it absolutely was found slow.

The features of AES are as follows −

 Symmetric key symmetric block cipher

 128-bit data, 128/192/256-bit keys

 Stronger and faster than Triple-DES

 Provide entire specification and design details

 Software implementable in C and Java

3.1 Operation Of AES

AES is an iterative method rather than Feistel cipher. It
works on ‘substitution–permutation network’. It consists of
a series of linked operations, some of these involve
replacing inputs by specific outputs (substitutions) and
others involve shuffling bits around (permutations).

AES performs all the computations on bytes and not on bits.
So, AES treats the 128 bits of a information block as 16
bytes. These 16 bytes are kept in four columns and four
rows in a matrix form for processing −

In AES the amount of rounds is variable and depends on the
length of the key whereas in DES it depends on key length.
In AES has for 128-bit keys there are 10 rounds, 192-bit
keys there are 12 rounds and 256-bit keys there are 14
rounds. Each of those rounds uses a unique 128-bit round
key, which is generated from the particular AES key.

The schematic of AES structure is given in the following
illustration −

Fig -7: AES Structure

3.2 Encryption Process

Now, let’s see the description of a typical round of AES
encryption. Each round has four sub-processes. The first
round process is as shown below –

Fig -8: Encryption Process

Byte Substitution (SubBytes):

The 16 bytes of input are substituted by using a fixed table
(S-box) given in design. The result is in the form of a matrix
of four rows and four columns.

Shiftrows:

Every row of the matrix is shifted to the left. Any entry that
‘fall off’ are again re-inserted on the right side of row. Shift
is done as follows −

 First row isn’t shifted.

 Second row is shifted left by one (byte) position.

 Third row is shifted left to two positions.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6509

 Fourth row is shifted left by three positions.

 The result is a new matrix with same 16 bytes but
shifted accordingly with respect to each other.

MixColumns:

Every four byte column is now transformed using a special
mathematical function. This function takes a four byte input
of one column and outputs four new bytes, which replace
the actual column. The result of this is an another new
matrix consisting of 16 new bytes. It is to be noted that this
step is not done in the last round.

Addroundkey:

The 16 bytes of the matrix are now taken as 128 bits and
are XORed with 128 bits of the round key. If last round is
being done then the output is the ciphertext. In other case,
the resulting 128 bits are considered as 16 bytes and we
begin another similar round.

3.3 Decryption Process

The decryption process of an AES ciphertext is similar to
the encryption process but in the reverse order. Each round
has four processes which are conducted in an inverted
order −

 Add round key

 Mix columns

 Shift rows

 Byte substitution

Since sub-processes in each round are inverse to each other,
unlike for a Feistel Cipher, the encryption and decryption
algorithms must be separately implemented, although they
are very closely related.

3.4 AES Analysis

At present in cryptography, AES is widely used as it supports
both hardware and software. Till today, no practical
cryptanalytic attacks are registered against AES. And in
addition to this AES has built-in flexibility of key length,
which allows a degree of ‘future-proofing’ against progress
in the ability to perform exhaustive key searches.

However, the AES security is assured only if it is correctly
implemented and good key management is employed.

4. VERIFICATION OF MEMORY INTEGRITY

Memory Integrity Verification – Description:

 Our main intention is to check the integrity of the
data which is present in the External Memory

 We assume, Memory as an un-trusted part. As the
memory contains the important data, which is very

sensitive, which should not be accessed by the un-
authenticated users.

 There are many ways a hacker can corrupt or
access the data, out of many I would like to verify
whether the data present in the external memory is
secure i.e., the un-authenticated user has not altered
the data. For verifying it, Memory integrity is the
best way.

 In the above block diagram, we can see the Message
Digest5(MD5) function which is one among the
famous hash functions and the AES Encryption and
decryption block.

 Firstly, when processor wants to write data into the
memory, it has to give address (to which subset of
memory data has to be send)and data(actual
information).

 When the processor sends the address information
it will goes to the MD5 hash function through the
address bus,(which we assume as 32bits) and then
when data is sent by the processor, the Hash
function using its algorithm converts the plain-text
data to the hash Value, which is of 128bits(in case of
MD5), those hash values will be stored in the hash
table, In hash table the address and the
corresponding hash value will be stored. Parallely
the AES128 Encryption gets the 32bitWRDATA as
the input, it converts the pain-text data to the
Encrypted Data(which is reversible where as the
Hash values generated can’t be reversed) and the
encrypted data will be stored in the external
memory targeted by the processor.

 Now we have done with writing data into the
External Memory, As the External Memory is Un-
trusted, hackers can change data without the notice
of the valid user. So to check that whether our
information is secure or not we have to read the
Data by giving the address which we want to check.

 By Giving the 32bitRDADDR it goes to External
Memory and the data residing to that address will
be selected and fetched from the External Memory,
As the Data in External Memory is Encrypted it has
to be decrypted so that it has to be Hashed by the
MD5 again.

 When the Decrypted Data is Received by the MD5 it
generates the 128bit Hash Value and sends to the
Checker, Checker By receiving the Hash Value, it has
to confirm whether the Hash value is similar to the
Hash value generated for the WRDATA, so the
checker polls the hashtable using the WRADDR ,
Hashtable by receiving the WRADDR will send the
corresponding 128bitHashvalue which is stored in
it.

 Then Checker after getting the Hash value will
compare the two HashValues(of WRDATA and
RDATA) Checker performs the XOR operation
between two Hash values, When the two Hash
values are same using the XOR operation it

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6510

Generates the zero as the output (which is error
signal), which indicates that that no error is present
and the Data written in memory is safe. If the two
hash values are different then XOR Generates one,
which implies Error signal asserts, which indicates
that the data stored in the memory have been
altered by the hacker.

 Fig -9: Verification of memory integrity - schematic

5. RESULTS

Fig -10: Result of MD5 hashing

Firstly, on resetting, I have passed a address through address
bus, to where (in which segment of memory), I want to store
data, then after sending data, I have passed data of 32 bits,
that data will be encrypted through encryption algorithm
and a hash value is created using a hash function, here as we
are using MD5 it produces a hash value of 128 bits. In the

memory the encrypted data was stored and in the hash table,
the address and the corresponding hash value will be stored.

When we want to check the data integrity(security feature) ,
we have to read send a address using address bus, so that
particular address location will be selected, and the
encrypted data will be fetched from the memory, The data
will be decrypted using the Decryption algorithm, and the
hash value will be generated and compared with the hash
value of the data, which was generated earlier for the same
data, and does XOR operation, on both Hash values, if both
are same “err” produces ‘0’ ,else produces ‘1’ .

In the Wave form, we can see two scenarios, where for the
first reading from the memory, err is ‘0’ indicates, no
memory changes, in the second reading, err is ’1’ indicates
that data in the memory have been altered.

6. CONCLUSION

This paper discusses about the memory integrity verification
of a SoC using MD5, which is one of the famous Hashing
Functions. And here are two scenarios: In first scenario, the
memory integrity is good, i.e., the write and read data
matches. In the second scenario, the memory integrity failed
as write and read data doesn’t match as the data in the
memory was hacked by the hacker.MD5 Algorithms are
useful because it is easier to compare and store these smaller
hashes than to store a large text of variable length. The MD5
algorithm is a widely used algorithm for one way hashes that
are used to verify without necessarily giving the original
value. MD5 algorithms are widely used to check the integrity
of the files.

REFERENCES

[1] Behrouz A. Forouzan, Debdeep Mukhopadhya,
“Cryptography and Network Security” Second Edition,2011.

 [2] William Stallings, “Cryptography and Network Security”,
Fifth Edition”.

 [3] Miles E. Smid and Dennis K. Branstad, “Data Encryption
Standard past and furure” may-1998

[4] Dr Reinhard Wobst, “The Advanced Encryption
Standard(AES): The Successor of DES” 2001.

 [5] Douglas Stinson, Chapman & Hall/CRC, “Cryptography:
Theory and Practice”.

[6] Charles Kaufman et al, “Network Security: Private
Communication in a public word”

[7] Rivest, R. The MD5 message-digest algorithm. RFC
1321, 37 (April 1992).

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6511

[8] Zhang Shaolan, Xing Guobo, Yang Yixian, Improvement
and Security Analysis on MD5 [J]. Computer Application,
2009, vol. 29(4):947-949.

[9] Xiaoling Zheng, JiDong Jin, Research for the
Application and Safety of MD5 Algorithm in Password
Authentication, 9th International Conference on Fuzzy
Systems and Knowledge Discovery, 2012.

[10] H. Mirvaziri, Kasmiran Jumari, Mahamod Ismail, Z.
Mohd Hanapi, A new Hash Function Based on Combination
of Existing Digest Algorithms , The 5th Student Conference
on Research and Development – SCOReD 2007, 11-12
December 2007, Malaysia.

[11] Abdullah, A. M., & Aziz, R. H. H. (2016, June). New
Approaches to Encrypt and Decrypt Data in Image using
Cryptography and Steganography Algorithm., International
Journal of Computer Applications, Vol. 143, No.4 (pp. 11-
17).

[12] Singh, G. (2013). A study of encryption algorithms
(RSA, DES, 3DES and AES) for information security.
International Journal of Computer Applications, 67(19).

[13] Gaj, K., & Chodowiec, P. (2001, April). Fast
implementation and fair comparison of the final candidates
for Advanced Encryption Standard using Field
Programmable Gate Arrays. In Cryptographers’ Track at
the RSA Conference (pp. 84-99). Springer Berlin Heidelberg.

