
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 654

An Extensive Study of Infrastructure Automation using Elastic Cloud

and Compiler Optimization

Kunal Bhandari1, Geetha. V2

1Student, Department of Information Science, RV College of Engineering, Bengaluru, Karnataka, India

2Assitant Professor, Department of Information Science, RV College of Engineering, Bengaluru, Karnataka, India
---***--
Abstract - In the highly competitive market, companies
have many software’s running on their distributed systems
which are on premise but as demands increases, capital costs
spent on infrastructure also skyrockets. This leads to
unbalanced use of resources implying resource utilization is
not balanced efficiently. People needing resource utility may
not get what they need leading to inefficiencies in productivity.
The only possible way is to pool resource and provision them
virtually on cloud. Provisioning Resources on cloud manually
can lead to service outages and huge downtime which can
affect business of customers running their critical services for
their customers. It also affects reputation for a cloud company.
Therefore choosing path to automate the infrastructure
provision is the go. It will have no human intervene. The
models are automated to provision resources based on the
requests of the customers. This will also eliminate any scope of
human errors. The manual provision by engineers can cause
human burnouts and can annoy them due to performing
similar tasks and bring down their work efficiency. The
Automation is suitable to avoid these challenges to have
continuous integration and deployment. The Automation
provide resources in the form of virtual machines (VMs) used
to run software for business purpose. The advantage of
running it on a virtual machine gives it a dedicated
environment to run it without any other dependency and also
gets the advantage of running it at desired optimal speed. The
software running has an auditing tool to check whether the
usage of software is correct. This is analogous to compilers
verifying their usage like syntax and semantics. A lot of cloud
compilers have been developed and embedded on software’s
running on cloud but still are in developing phase. Usually
compiler are embedded with software for auditing
completeness but they tend to take large resources hence
optimization of compilers give results with low latency and
balanced high resource utilization factor.

Key Words: Cloud Compiler, Infrastructure Automation,
Virtual Machine, Infrastructure as a code

1. INTRODUCTION

The Infrastructure Automation is a powerful step to
automate the need of resources by automated scripts
generated or run as service created by Infrastructure as a
code. The DevOps team have people from both the
background of development as wells as operation to work up
in sync to run a smooth automation service. It has ability to

come up on its own if the service goes down hence not
requiring human intervention and the time taken is less than
what would have been if manually done. It can self-heal to
isolate the outage areas which can be verified by monitoring
logs of automation controlled by system engineer. This
implementation provides a deliverable software which
creates infrastructure in real-time according to the
parameters set by user. The advantage of this model is
scalability because of high resource utilization factor and it is
elastic a user can scale up or down the computing, storage or
networking resources which is provisioned from pool of
resources. The virtual appliances created by automation is
used for business purposes for testing and running traffic to
develop a feature. The configurations done on these
appliances are verified by a compiler as service running on
cloud. The optimization of compiler are with respect to
internal data-structures used. It looks on efficient way for
internal processing of these data-structures. Since compiler
have to sort out many dependencies, this is usually in the
form of acyclic graph structure. It has focus on such
mechanism which do not take much memory and time,
hence it produces intermediate representation in the form of
binaries because they can be loaded fast, processed fast,
takes less time and are in low-level language which are easily
understood by machines. Thus there are many optimizations
which are to be discovered. The next section elaborates on
these systems end-to-end.

2. LITERATURE SURVEY

The Infrastructure Automation has seen in last couple of
years of growing importance of DevOps (Development and
Operations), but there is more to this. The Infrastructure as a
code service provisions computing data centers through
configuration files rather than manually connecting the
network hardware.

TOCSA [1] is Topology and Orchestration Specification for
Cloud Applications. It is a modelling system based on node
system. TOSCA has some nodes which run automation
scripts and other nodes which are classified for deployment
purpose. There is some nice distinction between the jobs
classified to run on. The modelling node system forms a
graph system to proceed with correct ordering of
automation services satisfying all dependencies. This system
is necessarily acyclic tree (graph) forming a topological
approach weeding out circular dependencies.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 655

MORE [2] as name suggests is model-driven approach for
infrastructure automation for cloud IT services that
concentrates on automating the deployment of cloud service
and applications. It has the provision to change the
configuration file dynamically. It defines a topology which is
converted into executable code model to reach a desired
state. The dynamic changes when updated re-compiles only
updated parts and its dependents and dependencies
following recursively eliminating the approach complete
recompilation. This also leads to detect changes intelligently
and paves way for incremental automation with phased
approach.

The Compiler Optimization are based on registry [3] model
storing internal values and how they are loaded internally
without much load-store operations. The load-store reduced
results in optimizations of faster reads and ruling out
unnecessary write which results in faster execution upto 3x.
These frequent load-store are written to temporary registry
where they are accessed and only after final update or
commit operation , they are written back to cache or backing
store. Examples could be iterators of for loop where looping
variable i and other frequent variables in body of the loop
are stored temporarily in registry and after the complete
loop iterations, variable i may be destroyed and other
frequent variables are stored in cache or backing store with
dirty bit on to carry out concurrency.

The software signature [4] to the code blocks are assigned to
the model to not allow any illegal branching or code
execution. It plans to take an efficient data path to execute
model plan which results in low latency and optimal use of
spatial memory. The intermediate representation are
developed for this purpose. Sometimes the executable file
can be corrupted with minor changes resulting in illegal code
executions or branching. The software signature assigned
are internal to code blocks so that even if illegal branching
would occur it fails software signature test because it is
linked to its correct signature with dependency on previous
branch on code block making only correct branch to proceed
further with execution and aborting program if illegal
branching occurs.

3. STUDY ON AUTOMATION AND COMPILER
OPTIMIZATION

3.1 Infrastructure Automation

In [5], authors presented on workflow management of
automation infrastructure. The paper talks about the
systematic approach to design the workflow of automation
modules with the modules in the higher ups having a tree
structure and modules in lower parts acting as a child having
dependency on the above modules described. It also
discusses about techniques of cloud computing to set up
different virtual instances by pooling of resources centrally
enabling shared tenancy and supporting metered usage. It

also sheds light about managing the networking part and
maintenance of operations on the cloud and configuring
various services on the network as cloud services. The
complete workflow is automated, where just initialization of
service token automates the complete pipeline of work
without having to initialize intermediate actions. It just gives
final action of output.

In [6], authors presented on scaling of automation
infrastructure. The paper talks about scalability of application
services hosted in cloud and methods to remove the
bottlenecks. It throws light on deployment of services in
Multi-hybrid Cloud Platform. It talks about deployment
specifications ready for orchestration at a large scale and how
to solve dependencies. It proposes micro-service architecture
having minimal dependency solved through endpoints
published to interact with other service. We can load only the
service we need without running the complete application
given that it doesn’t have any dependency. The kubernet
helps in orchestrating the deployment in order such that
satisfies dependencies. Lastly it explains the importance
thrown on automation unit testing, integration testing and
end-to-end system testing and maintenance of development
operations.

In [7], authors presented on inter-cloud applications for
enabling services on hybrid cloud. The paper discusses use of
2 state architecture which requires cloud applications on
different servers to interact with each other in real-time to
service the request. It requires both service to be up and
running. The interactions can be one-way or two-way. Only
dependencies to be solved is to know the service end points
of the other service needed to talk. If those are published, it is
the statefull state because it is aware of whom to contact for
what, but limiting factor is even other service needs to
statefull. If not, it is stateless state, where service is running
only for micro-service architecture. This clear distinction
between statefull vs stateless is of the binary format
representation where service is on (1) or off (0), therefore
simplifying representation of services. The log is more
classified where we can dig deeper into modules having the
desired vs undesired state for debugging any discrepancies.

3.2 Compiler Optimization

In [8], authors presented on analysis on parsing technique
and performance on compiler applications. This paper talks
about Compiler as the need to design and connectivity
between the hardware and software process. Programs
written in a high level programming language to be
translated to object code before going to be executed. This
paper is about brief information of compiler on how the
source program gets evaluated and translated, explain the
concept of pre-processors, translators, linkers and loaders
and procedure to generate target code and from which
sections source code has to pass and parse in order to
generate target code as output. It specifies a roadmap of
what to process in which order aiming to satisfy all
constraints and dependencies. The design to load the object

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 656

and dynamic changes should be coherent with spatial and
temporal memory.

In [9], authors presented on cloud compiler applications.
This paper talks about computers becoming limitation when
it comes to local installation of compilers and it results
mostly in numerous portability and compatibility problems.
Compilers and their versions are hugely dependent on the
specifications of target computers resulting in difficulties to
programmers in compiling such programs. The solution is
given in the form of cloud native compiler as a service. The
cloud native approach have compilers on cloud with users
compiling a program online sending that program unit or
folder as input. The compilation takes places on the cloud.
The response is sent back as error or as executed output. It
deals with optimizations as learnings from machine learning
with deep networks through errors and user-defined action
and pattern. It talks about compilers on remote networks
and architecture for scaling such solutions by orchestrating
them on cloud.

In [10], authors presented on online compiler as cloud
service and automation. This paper talks about having
different compilers and version for compiling program in
specific language. This creates problems on storage as well
as portability. Moving on these solutions on cloud and
orchestrate them can solve problems. The request will be
handled based on the server load balancing capacity. The
server assigns the special spawned processor based on
request to compile that language based program
configuration or specification. The request send the response
back which would be output after compiling the program.
The output may also be error if program has lexical, syntactic
or semantic errors. These cloud models are trained on
machine learning model to learn from user defined patterns
and errors to incorporate such things for compiling it to
executable object to so that user gets the understandable
output format and message according to the context of the
program. These learnings are modelled to learn
automatically.

4. CONCLUSIONS

 The ever increasing use of infrastructural resources calls for
a system to be in place for assigning them, maintaining a
queued list and prioritizing such allocation of resources. It is
essential that this system should be automated so that it can
be efficiently be carried without human prone error but
instead to be monitored by humans. It saves time from
manual configuration and eradicates long waiting time hence
increasing productivity of both developers needing such
resources and system automation engineers automating
resource allocation. This eliminates manual laborious work
which could cause human burnouts. It is essential to allocate
resources with priority to get done with important business
projects which require essential resources without starving
other process. The automated resources also needs to work

efficiently internally. The verification of configuration on any
virtual appliance can be done by compiler. Based on
resource available and overhead involved, these compilers
can be on cloud if it is single and large or embedded on the
appliance if small and multiple versions exist for different
tools.

FUTURE SCOPE

To get all desired features such a availability, reliability,
efficiency, confidentiality, integrity etc. is only an ideal
situation which we can strive to achieve but in real world
only some important objectives (ex:- high confidentiality
affects availability and vice-versa) are achieved guided by
business rules but cannot compromise on important features
such as security. Future goal is to accommodate all features
with an efficient working end-to-end system in place.

REFERENCES

[1] Matej Artac, Tadej Borovsak, “Topology and
Orchestration Specification for Cloud Applications
(TOSCA), DevOps: Introducing Infrastructure-as-Code”,
in processings of 2017 IEEE/ACM 39th IEEE
International Conference on Software Engineering
Companion.

[2] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg,
“Towards Model-Driven Provisioning, Deployment,
Monitoring, and Adaptation of Multi-cloud Systems”, in
proceeding of Sixth IEEE International Conference on
Cloud Computing, pp. 887-894, 2013.

[3] Md. Alomgir Hossain, Rihab Rahman , Md. Hasibul Islam,
Mahabub Azam,” A Study on Language Processing
Policies in Compiler Design”, American Journal of
Engineering Research (AJER), 2019.

[4] Christopher Monsanto, Nate Foster, Rob Harrison, David
Walker,” A Compiler and Run-time System for Network
Programming Languages”, European Journal of
Networking Research (AJER), 2017.

[5] Dimitrios Georgakopoulos and MarkHornick, “An
Overview of Workflow Management: From Process
Modeling to Workflow Automation Infrastructure “, in
proceedings of Kluwer Academic Publishers, Boston,
Volume 3, pp 119-153, 2015.

[6] Sushil Deshmukh , Sweta Kale, "Automatic Scaling Of
Web Applications For Cloud Computing Services: A
Review", in proceedings of International Journal of
Research in Engineering and Technology, Vol. 03, pp.
2321-7308, 2014.

[7] N. Asthana, T. Chefalas, A. Karve, A. Segal, M. Dubey and
S. Zeng, "A declarative approach for service enablement
on hybrid cloud orchestration engines," in proceedings
of IEEE/IFIP Network Operations and Management
Symposium, Taipei, pp. 1-7, 2018

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 657

[8] C.h. Raju, Thirupathi Marupaka, Arvind Tudigani
“Analysis of Parsing Techniques & Survey on Compiler
Applications”, International Journal of Computer Science
and Mobile Computing, 2013.

[9] S C Suryawanshi, Akshay Bankar , Akshay Agrawal ,
Aneesh Ashtikar, Pranesh Meher, “Cloud Compiler
techniques”, International Journal of Advanced Research
in Computer and Communication Engineering,2017.

[10] Arnab Paul, Arjun Datta, “Online Compiler as cloud
service and automation”, International Conference on
Advance Communication Control and Computing
Technologies (ICACCCT), 2014.

