
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6145

 Role of Node.js in Modern Web Application Development

Ghansham Jadhav1, Flavia Gonsalves2

1Student, Institute of Computer Science, Mumbai Educational Trust, Maharashtra, India
2Professor, Institute of Computer Science, Mumbai Educational Trust, Maharashtra, India

---***---
Abstract – A JavaScript Runtime Environment Node.js is
quick and dependable for substantial records and
overwhelming system load applications because of its event
driven, non-blocking, and asynchronous approaches.
Initially, we focus on Node’s modularity, its in-built package
manager labelled Node Package Manager and Node’s
working architecture. The main feature of Node.js is its use
of non-blocking event-driven I/O with an asynchronous way
to remain lightweight and efficient to handle concurrent
request. Using Node.js, we can build complex real-time
applications that can scale to millions of client connections.
We also discuss the factors supporting choosing Node.js and
why developers should use it. In this paper, we will describe
the advantageous features of Node.js. The main features of
Node.js- event-driven I/0, single-threaded and asynchronous
programming are discussed with examples to give better
insight into the working architecture of Node.js that led to
Node’s success.

Key Words: JavaScript, Node.js, event driven, single-
threaded, non-blocking, asynchronous

1. INTRODUCTION

Node.js is a JavaScript runtime environment. It is built on
Chrome’s V8 JavaScript engine. It is a cross platform
runtime environment originally developed in 2009 by
Ryan Dahl for developing server-side applications.
Using Node we can easily building scalable, fast, and
lightweight applications. V8 and Node are mostly written
in C and C++ focusing on low memory consumption and
performance. It can be regarded as server-side JavaScript.
It was created to address the issues platforms can have
with the performance in network communication time
dedicating excessive time processing web requests and
responses. Node.js allows JavaScript to be used end to end,
both on the client and on the server end. JavaScript has
developed very well and has exceled to dominate server-
side scripting [1] [2].

2. Node.js Internal Structure

V8: It is an open-source project created by Google. The
purpose of this open-source project is to execute JavaScript
code outside the browser. It gives access to node
underlying networking and helps the Node to handle
aspects of concurrency. (We know Node.js is all about
concurrency). 70% of the code written in this project is in

C++ and the other 30% are written in JavaScript.

Fig -1: Node.js internal structure-I

libuv: It is an abstraction layer on the top of c-ares (for
DNS) , iocp (for windows asynchronous-io) and libeio ,
libev. LibUv maintains and manages all the Input-Output
and events in the event pool. If I have to put in simple
words then I would say libuv allow your JavaScript code to
perform I/O operation whether its networking or file
operation etc. All the file/system operation and TCP level
connectivity are performed by this library. This library is
completely written in C++.

As JavaScript developer, you will be writing your
project in JavaScript and want it to compile and perform its
action. So you can see Node.js is just acting as an interface
between the JavaScript code that we write and other open
source code (V8 and libuv) that is written in either
JavaScript or in C++. For JavaScript developer, they don’t
interact with C/C++ code directly. So with this nice
interface to use and to relate the JavaScript to actual C++
code running in our computer to compile and execute our
JavaScript code. Node also provides a unified API’s to use in
our JavaScript project. Give a look in Fig-2

Fig -2: Node.js internal structure-II

https://github.com/joyent/libuv

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6146

The library module in Node.js like fs, http, path, crypto etc.
are very consistent API’s and they all ultimately refer to a
functionality that are mostly live inside the libuv project so
that you do not have access directly C++ code written in it.
You just use JavaScript functions and that functions calls
the Node.js libuv project. You do not have to worry about
its internal functionality written in C++ which libuv
handles by itself.

3. Module System

JavaScript does not represent an API for module
dependency and isolation in its specification. As a result,
including multiple modules is only possible by disclosing a
global variable. For example, the jQuery module can be
included in a HTML document by including this line at the
head tag (script src=https://code.jquery.com/jquery-
1.6.1.js) Then, refer to this module through the global
jQuery object. This process pollutes the global namespace
and can result in potential naming collisions.

Instead of defining a number of globals, Node has
introduced a modular system. One can define their own
module or can use the core modules or third party
modules. Node.js Modules are plugins, add-ons, and
extensions for Node to help with the development process.
The Node module discloses a public API (Application
Programming Interface) that one can use after the module
is imported into the current script. Node modules can be
categorized as local modules, core modules and third party
modules [7].

3.1 NPM- The Node Package Manage

Node.js has built-in support for package management
using NPM, a tool that comes by default with every Node.js
installation. The idea of NPM modules is sort of almost like
that of Ruby Gems: a group of publicly available, reusable
components, available through easy installation via a web
repository, with version and dependency management.
A full list of packaged modules are often found on the npm
website, or accessed using the npm CLI tool that
automatically gets installed with Node.js. The module
ecosystem is hospitable all and anyone can publish their
own module which will be listed within the npm
repository.

Some of the foremost useful npm modules today are:

 express - Express.js is a Sinatra-inspired web
development framework for Node.js, and the de-
facto standard for the majority of Node.js
applications.

 connect - Connect is an extensible HTTP server
framework for Node.js, It is providing a collection
of high performance “plugins” known as
middleware;

 socket.io and sockjs – A server-side component
of the two most common web sockets
components out there today.

 mongodb and mongojs – To provide the API for
MongoDB object databases in Node.js.

 bluebird - A fully featured Promises/A+
implementation with specially good performance.

 moment - A JavaScript date library for validating,
parsing, manipulating, and formatting dates.

The list goes on. There are plenty of really useful packages
out there, available to all or any (no offense to people who
I’ve omitted here) [6].

4. Key Features of Node.js

4.1 Non-blocking I/O:

The I/O methods within the Node.js standard library
provide asynchronous versions, which are non-blocking,
and accept callback functions. Some methods even have
blocking counterparts, which have names that end with
Sync Example

const fs = require('fs');

const content = fs.readFileSync('/file.txt); //
blocks here until file is read

console.log(content);

moreWork(); // will run after console.log

Asynchronous example:

const fs = require('fs');

fs.readFile('/file.txt, (err, content) => {

 if (err) throw err;

 console.log(content);

});

moreWork(); // will run before console.log

In the first example above, console.log are going to be
called before moreWork(). In the second example
fs.readFile() is non-blocking so JavaScript execution can
continue and moreWork() are going to be called first. The
ability to run moreWork() without expecting the file read
to finish may be a key design choice that permits for
higher throughput [1].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6147

4.2 Single Threaded Event Loop

Node.js Platform doesn't follow Request/Response Multi-
Threaded Stateless Model. It follows Single Threaded with
Event Loop Model. Node.js Processing model mainly
supported JavaScript Event based model with JavaScript
call-back mechanism.

As Node.js follows this architecture, it can handle multiple
concurrent client requests very easily.

The “Event Loop” is heart of Node.js Processing model.

Fig -3: Node.js Application/Server

Single Threaded Event Loop Model Processing Steps:

• User Send request to the Server.
• Node.js Web Server inside keeps up a Limited Thread

pool to offer types of assistance to the Client Requests.
• Node.js Web Server gets those requests and spots

them into a Queue. It is known as "Event Queue".
• Node.js Web Server inside has a Component, known

as "Event Loop”. It got this name because it uses
infinite loop to receive requests and process them.
(Pseudo code to comprehend this underneath).

 public class EventLoop {

while(true){

 if(Event Queue receives a JavaScript Function
Call){

 ClientRequest request =
EventQueue.getClientRequest();

 If(request requires BlokingIO or takes more
computation time)

 Assign request to Thread T1

 Else

 Process and Prepare response

 }

 }

}

• Event Loop utilizes Single Thread as it were. It is
principle heart of Node.js Platform Processing Model.

• Even Loop checks any Client Request is put in Event
Queue. Assuming no, athen wait for incoming requests
for indefinitely.

• If yes, at that point get one Client Request from Event
Queue

• Starts process that Client Request

• If that Client Request Does Not requires any Blocking
IO Operations, at that point procedure everything,
plan reaction and send it back to Client.

• If that Client Request requires some Blocking IO
Operations like connecting with Database, File
System, External Services then it will follow diverse
methodology

• Checks Threads accessibility from Internal Thread
Pool

• Picks up one Thread and allot this Client Request to
that string.

• That Thread is answerable for taking that demand,
process it, perform Blocking IO tasks, get ready reaction
and send it back to the Event Loop

• Event Loop thusly, sends that Response to the
respective Client [5].

5. Reasons for why Node.js used widely by Modern
Web Developers.

5.1 Google V8 JavaScript Engine

Node.js executes JavaScript code using Google V8 engine.
Unlike other JavaScript interpreters, V8 engine compiles
the JavaScript code into native machine language. Thus, it
enables the runtime environment to boost the
performance of web server applications by executing
JavaScript code during a faster and more efficient way [1].

5.2 Asynchronous I/O Operations

Node.js further performs all I/O operations
asynchronously through a single-threaded event loop. The
advanced methodology makes the Node.js application to
perform I/O operations by sending asynchronous task to
an event loop alongside a call-back function. After sending
the async task to the event loop, the application continues
executing the remaining code. After completing the
asynchronous operation, the event loop returns to the task,
and executes the call-back function. In addition to
consuming less memory, the feature enables Node.js to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6148

handle a large number of concurrent connections
efficiently. The programmers can use the runtime
environment to perform common tasks like file system or
network connections, reading or writing to the database.

5.3 Robust Tooling

While using Node.js, the developers can take advantage of a
dependable package manager like npm. In addition to
being fast, consistent and robust, npm also simplifies the
method of specifying and installing project dependencies.
At an equivalent time, it keeps the project dependencies
separate to eliminate chances of version conflict. The users
can further take advantage of the strong file streams
capabilities of JavaScript using tools like broccoli, gulp and
brunch, while using a popular task runner like grunt.

5.4 Complements Real-Time and Multi-Use
Requirements

In addition to using responsive web design, the developers
nowadays need to build real-time and multi-user web
applications. Node.js enables programmers to make
complex gaming, chatting and communication applications
without putting any overtime and energy. The developers
can use websocket protocols to create real-time web
applications. As a two-way channel between the client and
web server, websockets can make the online server push
data to the client in a very faster and more efficient way
without increasing the overhead of HTTP. At an equivalent
time, the developers can create multi-user applications by
taking advantage of the event loop feature of Node.js [7].

5.5 Facilitates File Streaming

The web programmers can take advantage of the efficient
I/O handling capacity to Node.js to reduce the amount of
time required for streaming a file from the file system.
They can use the runtime to read/write streams to both
HTTP and websockets. Thus, they have can reduce the
overall transcode audio or video processing time in a
number of ways. For instance, a programmer can simply
shift the stdout from the web server to a web browser
through websockets, and allow the web page to display
output to the user in real time [7].

5.6 Popularity of JavaScript

Since early in the evolution of WWW, JavaScript has been
there in the browser. Even available when AJAX emerged,
JavaScript was vital. This has led to the popularity of
JavaScript among developers, despite some criticism. No
matter which server-side scripting language is used,
JavaScript has been the choice for client-side scripting.
Familiarity with JavaScript and adherence of Node to
JavaScript, with capabilities to code in the server-side and
numerous other features has developers to adopt Node. By
leveraging the best features of JavaScript as a language and

nurturing a vibrant community, Node has become a
popular platform and framework, with continued adoption
growth

5.7 Build and Maintain a Single Code Base

 Node.js enables developers to write down both client-side
and server-side code in JavaScript. So a programmer can
use JavaScript for building both frontend and backend of an
internet application. ThusNode.js eliminates the gap
between frontend and backend development [8].

Fig -4: JavaScript end-to-end

6. What reason are the biggest companies using
Node.js for?

6.1 PayPal

PayPal is one among the most important and most well-
known worldwide systems for Internet payments. The
platform enables its users to transact with one another
online quickly and simply in additional than 100
currencies.
According to Payal, the service has over 184 million active
customer accounts (as of 2015). The Company has been
using Node.js to create the consumer-facing side of its web
applications.

Why did they choose Node.js? Senior Director ‘Jeff Harrel’
of Payments Products and Engineering at PayPal says:
“Node.js helps us solve boundary between the browser and
server by enabling both the browser and server
applications to be coded in JavaScript. It brings together
our building claims to fame into one group which permits
us to know and respond to our clients' needs at any level
inside the technology stack".

Results:

The Node.js application was built twice as snappy with less
people, in 33% less lines of code and 40% fewer files (in
connection with past Java-based application) [3].

6.2 LinkedIn

LinkedIn is a business-situated person to person
communication administration found in 2002 in Mountain
View, California. LinkedIn permits clients to welcome

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6149

anybody (regardless of whether a site client or not) to turn
into an association.

It is accessible in 24 dialects and as of now has in excess of
400 million individuals in more than 200 nations and
regions. LinkedIn utilizes Node.js to engage the server side
of its mobile application.

For what reason did they pick Node.js?

As indicated by LinkedIn's Mobile Development Lead,
Kiran Prasad "One explanation was scale. The second is, on
the off chance that you take a gander at Node, the thing its
best at doing is conversing with different services."

Results:

When contrasted and the past Ruby on Rails-based
adaptation, the new portable application is up to multiple
times quicker and utilizes just a small amount of assets –
servers were sliced from 30 to 3. The advancement itself
was uncommonly quick [3].

6.3 Yahoo

Yahoo is an American worldwide technology organization;
centering and all around perceived for its web portal,
search engine, and related services. As per Yahoo, service
attracts more than 500 million consumers in more than 30
languages every month. For what reason did they pick
Node.js? Eric Ferraiuolo, Principal Software Engineer at
Yahoo clarifies: "It can be scalable, and every property that
we've moved toward the Node.js stack has seen an
expansion in execution" Results: Node.js has changed and
bound together the frontend designer culture at Yahoo, it
as of now controls numerous locales [3].

6.4 Netflix

Netflix is the world's greatest worldwide supplier of video
streaming including movies and TV series, accessible in
more than 190 nations. As of April 2016, Netflix detailed
more than 81 million endorsers around the world, with in
excess of 46 million in the U.S itself. At Netflix, the entire UI
is worked with Node. The innovation demonstrated so
viable, that the organization needs to utilize it likewise in
different layers of the stack. For what reason did they pick
Node.js? The group chose to utilize Node.js to accomplish
lightweight, modular and fast application. Therefore, the
start-up time of their new application has been diminished
by 70% [3].

6.5 GoDaddy

GoDaddy is a traded on an open market Internet space
enlistment center and web hosting organization. As of
January 2016, with in excess of 13 million clients and 61
million domains under management, GoDaddy makes the
world's biggest recorder. As of late organization has

patched up its whole backend to a completely open-source
Node.js-based framework. For what reason did they pick
Node.js? As indicated by Stephen Commisso, Senior
Software Developer at GoDaddy, Node enables to build
quality applications, deploy new features immediately,
write unit and integration tests easily, REST easily. Another
key feature is NPM access. Results: GoDaddy's Vice
President of Engineering, Antonio Silveira states: "we are
currently utilizing about 10x less servers to have our client
sites and we decreased the Time To First Byte (TTFB)
significantly from ~60ms to something around ~12ms.
Execution is a key differentiator when we talk about web
applications, remembering a superior situation for Google's
query items." GoDaddy is currently ready to deal with a
similar burden with just 10% of the hardware [3].

According to Stack Overflow survey 2019 the Node.js
is the most commonly used and most wanted
technology [4] Give a look in Fig-5 and Fig-6.

Fig -5: Stack Overflow Survey-2019

Fig -6: Stack Overflow Survey-2019

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6150

Potential application areas of Node.js

 Media

 Payment gateways

 Ecommerce

 Social media

 Enterprise web apps

 Backend/API for mobile apps

7. CONCLUSION

Node has transformed the usability of JavaScript, making
Node a complete programming language. From browsers
to server-side scripting outside of browsers, Node has
made possible the availability of a runtime environment, a
library full of free useful modules that can be imported by
using an in-built tool named NPM. Node.js uses event-
driven I/O, non-blocking asynchronous programming to be
lightweight and be efficient. Essentially, any business
utilizing Node can: utilize fewer servers, utilize less
engineers and abatement page load times.

REFERENCES

[1] https://Node.js.org/en/docs

[2] Node.js in Action by Mike Cantelon, Marc Harter, T.J.
Holowaychuk, Nathan Rajlich.

[3] https://brainhub.eu/blog/9-famous-apps-using-
node-js

[4] https://insights.stackoverflow.com/survey/2019

[5] https://www.journaldev.com/7462/node-js-
architecture-single-threaded-event-loop

[6] https://www.toptal.com/nodejs/why-the-hell-would-
i-use-node-js

[7] https://nodejs.org/api

[8] A Comparative Analysis of Node.js (Server-Side
JavaScript) Nimesh Chhetri.

https://nodejs.org/en/docs/
https://brainhub.eu/blog/9-famous-apps-using-node-js/
https://brainhub.eu/blog/9-famous-apps-using-node-js/
https://insights.stackoverflow.com/survey/2019
https://www.journaldev.com/7462/node-js-architecture-single-threaded-event-loop
https://www.journaldev.com/7462/node-js-architecture-single-threaded-event-loop
https://nodejs.org/api/

