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Abstract 

An attempt of Finite Element Method is made on the viscous fluid of free convection nature in a 
vertical porous channel.  The porous medium in which the flow is assumed is bouneded by 
impermeable parallel walls.  A specific direction of axis of channel is considered. The vicous porous 
flow in the medium in the present investigation is an assumption with certain boundery conditions.  
Brinkman Model is implemented in the commutation of equations for heat and momentum concepts 
in developing conservation equations.  The viscous and Darcy dissipation have been modeled in the 
energy equation for the heat flow phenomenon.  In the simulation of the finite element method, the 
fluid and the porous matrix have been imagined to be in local thermal equilibrium and the flow is 
consider to be one direction of the buoyancy. The non-linear equations which govern the phinominon 
of the flow, heat and mass transfer are clearly demonstrated in the simulation. Velocity profile and 
heat dissipation with respect to temperature, Sherwood number, concentration, Nusselt number are 
analyzed and their profile is studied in the paper.     
      
Keywords: Nusselt number, Fluid Flow Sherwood Number, viscous fluid,  Galerkin, Finite element method. 

 
 

1. Introduction  
 
The Numerical simulation on various models 
convey the solutions to industrial systems 
where the heat and temperature effects 
involved[1]. It is observed that a chance of 
exponential increase of failure in the 
performance of a system with the increase in 
heat rate.  The numerical attempt made in the 
paper lead to the solutions of enhancing the 
expected levels of performance of the working 
systems with the techniques of thermal 
managements through various techniques 
developed in simulation attempts. The efficiency 
in the performance can lead to reliability. The 
various cooling techniques is template.  
 
2. Formulation and methodology 
 
The model has been framed so as to trace the 
mathematical information and conclusion.  The 
problem relating to convective phonominon of 
Porouschannel filled medium matrix that are 
bounded walls of impermeable nature has been 

carefully modeled and fluid matrix is assumed to 
be with the direction of axis of flow channel.   It 
has to be carefully seen to keep constant 
temperature at the surface parts of walls.  The 
concept of Brinkman model is implemented in 
writing the equations of momentum 
conservation for analyzing flow. The fluid and 
the porous matrix are in local thermal 
equilibrium and the flow is unidirectional along 
the direction of the buoyancy.  The possibility of 
dissipations due to various causes are 
considered and assumed as Darcy dissipation 
which needs to involve in the energy driving 
equations to describe the heat flow.  

 A reference frame of mathematical situation 
0 (x, y, z) is considered in which the x-axis will 
be assumed to along normal direction against 
buoyancy.  And it is to see that the vertical walls 
must be along (y ,z) plane y =   b. Let (u, 0, 0) be 
the one indicating profile of velocity field only in 
one direction of flow and T the temperature can 
be an ambient temperature. The equations that 
govern the concepts of the flow and heat 
transfer will be as follows           
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where 0 is the density at the ambient 
temperature To and concentration Co and  , k,  
are the coefficients of Kinematic viscosity, 
thermal conductivity and thermal expansion of 

the fluid respectively,  

 is the volumetric 
coefficient of expansion with mass fraction 
concentration, k is the permeability of the 
porous medium and Cp is the specific heat at 
constant pressure, this the molecular diffusivity 
and k11is the cross diffusivity.. 

In view of the continuity equations, we take u 
= u (y, z)               

The boundary conditions are  

          u = 0 on z =   b 

         T =    T1  ,             C =   C1         

                        (2.6) 
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 on Z = 
0 in  view of the symmetry. 

We introduce the following non-dimensional 
variables as follows. 
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Substituting these in the governing equations 
the corresponding dimensionless equations 

under Boussinesq approximations (on dropping 
the asteriks) are 
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The corresponding boundary conditions in 
the non-dimensional form are 

             u = 0   ,   = 1, C = 1 on   z =  1  
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The observation of symmetrical mathematical 
flow in the present study is in view of mid plane 
of the fluid flow medium.  It is investigated to 
observe the fluid floe pattern with respect to one 
half of the domain which was bounded by the 
walls of properties of impermeability.  The finite 
element simulation is executed with functions 
having quadratic approximation as designed by 
eight nodded rectangular elements in the normal 
cross sectional plane (y - z ) that is completely 
bounded by the planes of z = 0 and 1. 

3. FINITE ELEMENT ANALYSIS OF THE 

PROBLEM 

If ui and i are the approximations of u and  we 
define the errors (residual) E1i  and E2i  as  
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        These errors are orthogonal to the weight 
function over the domain of ei. Under Galerkin 
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weight function. Multiply both sides of the 
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where i is the serendipity element bounded 
by i  , ny , nz are the direction cosines normal to 
i .Substituting (3.4) ,  (3.5) & (3.6)  in L.H.S of  
(3.13) , (3.14) & (3.15)  we get 
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Choosing different s'N i

k  corresponding to 
each element ei (3.11) results in sixteen 
equations for two sets of unknown 
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of simulation at each point of element mn has 
been periodically made with the consideration of 
boundery conditions and then an integration of 
elements in the matrix was done.  The unknown 
parameters of u,  and C in the process of 
computation is attempted with respect to global 
nodes which ultimately determine them on 
solving the matrix equation and it may lead to 
solution of matrix solution.  

 In order to compute, It is to consider a 
serendipity element having the vertices of (0,0), 
(0,1) (1,0) and (1,1). The eight nodes of the 
selected and computed element are clearly given 
in Fig.(a) and the operations of functions for the 
quadratic interpolation at these nodes have been 
as under 
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 Substituting these shape functions in 
(3.19) and integrating over the element domain 
the matrix for the global nodes of u viz. ui ( i 
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Where 
2121 ,,, UUUU FF

 are column matrices 
given by 
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  Equation (3.20) yields the following two 
equations in terms of the partitioned matrices.
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                                                   
    (3.25) 

Where
2121 F,F,,  

, 
2

C

1

C

2

C

1

C F,F,, 
  are 

column matrices given by   
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

 

 

  
  
     
  
  

           ; 
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4 8

    ;C C

CC

CC

C C

C C

  
  
     
  
  

        

The boundary conditions (essential) on the 
primary variables are  

 u3 = u4 = u5 = 0;  

 3 = 4 = 5 = 1 and 

 C3 = C4 = C5 = 1   on         y =1                                          
              (3.26) 

In view of the symmetry conditions we obtain 

 Q1 = Q2 = Q6 = Q7 = Q8 = 0 

   
087621  TTTTT QQQQQ

                                                   
   (3.27) 

 1 2 3 4 8 0C C C C CQ Q Q Q Q    
 

Solving the ultimate 8  8 matrices we 
determine the unknown global nodal values of 
ui, i  

( i =1 ,2,……..,8). 

 The solution for u,  may now be represented 
as  

 
8 8 8

1 1 1

,  and i i j j i i

k j i

u u N N C C N 
  

    
    

 

4.  DISCUSSION OF NUMERICAL RESULTS  

It is observed in the results of simulations that 
the behaviour of fluid flow in the direction of  
planes y=0&1 and Z=0 & Z=1/2 can be 
acompanied  with movement in the direction 
from y=0 to 1 in vertical manner.  A higher value 
is observed to at  at y=0.4 while at Z=1/2 level it 
can be maximum at the position of  y=1. It is 
clearly noticed that the velocity is decreases 

with increase in 
1D . Permeability of the porous 

medium smaller and therefore the velocity in the 
fluid region can also be very low. The variation 
of u along the normal planes y= 0 & 1 shows that 

u decreases with  
1D   (Figs 1, 2). This situation 

in the stud gives the fact that lesser the 
permeability of the porous medium smaller the 
magnitude of u. The values of u at y=0 are higher 
than those at y=1 level for all variations in 
parameters. Figures 3 and 4 show the variation 
of non-dimensional temperature at the 
horizontal levels y=0 & ½ with respect to α, and 
N1. A marginal depreciation in θ is observed to 
be with increase in the heat source parameter α. 
The variation of θ with radiation parameter N1 
reveals that the enhancement in N1 may cause an 
increase in the actual temperature at y=0&1 
levels. The variation of θ with α, and N, at the 
vertical levels Z=0&1/2 is shown in figures. 
From figures 7&8 it can concluded that the 
actual temperature experiences depreciation 
with increase in the heat source parameter α. 
This indicates that the presence of the heat 
generating source in the fluid region leads to a 
reduction in the actual temperature at both the 
vertical levels.  
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Fig. 1 
Variation of u with D-1 at y=0.5 level 

M=5; G=200; N1=0.5; S=0.8; k=0.5; P=0.71; D-

1=2000; z=0.5 
I          II         III        IV 

D-1        2x103    4x103   6x103   8x103 
 

   (1) 

Fig. 2 
Variation of  u with  D-1 at z=0 level 

M=5; G=200; N1=0.5; S=0.8; k=0.5;P=0.71;  =2; 

D-1=2000; z=0.5 
I          II         III        IV 

D-1        2x103    4x103   6x103   8x103 

 
 

Fig. 3 
 

Variation of u with  D-1 at z=0.5 level 
M=5; G=200; cn=0.5; S=0.8; k=0.5; P=0.71; D-

1=2000; z=0.5 
I          II         III        IV 

D-1        2x103    4x103   6x103   8x103 

 
 

Fig. 4 

Variation of    with    at y=0 level 
M=5; G=200; N1=0.5; S=0.8; k=0.5; P=0.71;  =2; 

D-1=2000; z=0.5 
I          II         III        IV 

        0          2          4         10 

 
Fig. 5 

Variation of    with     at y=0.5 level 
M=5; G=200; N1=0.5; S=0.8; k=0.5; P=0.71; D-

1=2000; z=0.5 
I          II         III        IV 

    0          2          4         10 
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Fig. 6 

Variation of    with    at z=0 level 
M=5; G=200; N1=0.5; S=0.8; k=0.5; P=0.71;  =2; 

D-1=2000; z=0.5 
I          II         III        IV 

    0          2          4         10 

 
 

Fig. 7 
Variation of    with     at z=0.5 level 

M=5; G=200; N1=0.5; S=0.8; k=0.5; P=0.71; D-

1=2000; z=0.5 
I          II         III        IV 

    0          2          4         10 

 
Fig. 8 

Variation of    with N1 at y=0 level 
M=5; G=200; S=0.8; k=0.5; P=0.71;  =2; D-

1=2000; z=0.5 

I          II         III        IV 
N1    0.5       1.5        5         10 
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