
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6057

VLSI Architecture Implementation for Reversible Watermarking

Shivam Sinha1, Vishal Gupta2, Sanjana Gosavi3, Uttara Bhatt4

1,2,3Final-year B.E.-EXTC, Thadomal Shahani Engineering College, Mumbai, India
4Assistant Professor, Department of EXTC, Thadomal Shahani Engineering College, Mumbai, India

---***--
Abstract - The paper proposes VLSI architecture of low

computational reversible watermarking technique. The

architecture uses reversible contrast mapping (RCM)- an

algorithm used to embed and extract the watermark bits from

the pixels by using forward and reverse transform equations

respectively. RCM was chosen because it recovers all LSBs bits

even if it has been lost during digital data embedding. The

system is designed for 4x4 block of compressed grey scale

image. It consists of two major modules, encoder and decoder

designed separately using Xilinx ISE design suite 14.7 Spartan

3e FPGA family. Encoder uses 107 4-input LUTs and 67 slices.

On the contrary, decoder uses 370 4-input LUTs and 199 slices.

Key Words: Reversible watermarking, VLSI architecture,
Reversible contrast mapping, VHDL, Encoder, Decoder.

1. INTRODUCTION

Reversible watermarking techniques are also called as

invertible or lossless and were created to be applied mainly

in scenarios where the authenticity of a digital image has to

be granted and the original content is peremptorily needed

at the decoding side. It is important to point out that,

initially, a high perceptual quality of the watermarked image

was not a need due to the fact that the original one was

recoverable and simple problems of overflow and underflow

caused due to the watermarking process were not taken into

account too. Successively, this aspect has been considered as

basic to permit to the end user to operate on the

watermarked image and to possibly decide to resort to the

uncorrupted version in a second time if needed [1].

A large number of concepts such as data compression,

histogram modification [7], reversible contrast mapping

(RCM) [3], difference expansion (DE) [6], prediction error

judgement etc. along with their modification have been

developed to design reversible watermarking. Among these,

RCM has gained more popularity because of its low
computational feature. RCM was initially proposed by Coltuc

[3]. It is based on simple integer transforms applied on a pair

of pixels. In this technique, the least significant bits of the

transformed pixels are used for data embedding. Several

algorithms of RW along with their performance results are

reported through software simulations. At the same time,

hardware implementation of several conventional

watermarking methods on image and video are also

reported in the literature [2].

One essential requirement in RW is its real-time

implementation that can be met through hardware

realization. Although VLSI architecture of several spatial and

transform domain conventional watermarking methods are

reported, to the best of our knowledge, only very few

attempts are made for VLSI architecture design of RW and its

prototype design on FPGA platform. To fill up this gap, we

have developed VLSI architectures for RW on digital images

based on RCM algorithm. As an initial attempt, FPGA

architecture on RCM-RW algorithm reported in [4] is

developed and reported in [5]. However, there remains

scope for further modification on [4] to improve rate-

distortion performance. This demands modification in RCM-

RW followed by development of hardware design.

2. REVERSIBLE CONTRAST MAPPING

Let (x, y) be the pair of pixels of a compressed grey scale

image. The compressed image is a matrix of 4x4 i.e. the

image is converted to 4x4 blocks and each block is assigned a

pixel value. The pixels can be paired horizontally, vertically

or any desired way. After the pairing is done, these pairs are

processed or transformed by using reversible contrast

mapping. RCM basically consist of two transform equations,

namely forward and reverse. These transform equations are

applied to the pair of pixels, each pixel intensity values are

bounded between [0, L], where L=255 for a grey scale image.

The equations are as follows:

 Forward transform: x’= 2x-y y’=2y-x (1)

 Reverse transform x=(2x’+y’)/3 y=(2y’+x’)/3 (2)

To prevent the overflow and underflow problems a domain

is defined, such that the transformed pairs are restricted

within a sub domain of Dc [0, L] x [0, L], defined as: 0<=2x-y

<=255 and 0<=2y-x<=255. This is done to make sure that,

after transformation the pixel values should be between 0

and 255. We are giving a grey scale image as input, and we

expect to get the output as grey scale image as well, with

watermarks. Before the watermarked bits from the pixels

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6058

are extracted in the decoder side, the LSBs of these pixels are

cleared and the equation (2) is modified as follows:

 x=2x*+y*/3 y=2y*+x*/3 (3)

where x*=x’ and 00000001 y*=y’ and 00000001 (4)

Furthermore, the algorithm is basically used so that,

whatever data is embedded in the image it can easily be

extracted at the decoder side to maintain the robustness of

the image. Since, we are pairing the pixel values in a random

way, each pair is an input to the system. If we observe the

pairs, there can be four possibilities i.e. pixel pairs are both

even, one even one odd and both odd. Based on these

variations RCM works in a following way.

 LSB of x is '0', LSB of y is '0': LSB of both x' and y' is

'0' (as difference of even numbers, since x and y

are even), therefore x*=x’ and y*=y’ => x and y are

exactly recovered;

 LSB of x is '0', LSB of y is '1': LSB of x' is '1' and LSB

of y' is '0' => x*=x’-1 and y*=y’. Inserting these in

equation (3) we get x= (2(2x-y-1) +2y-x)/3=(x-2/3)

and y= (2(2y-x)+2x-y-1)/3=(y-1/3) therefore, x and

y are easily recovered.

 LSB of x is '1', LSB of y is '0': LSB of x' is '0' and LSB

of y' is '1' => x*=x’ and y*=y’-1. Inserting these in

equation (3) we get x= (2(2x-y) +2y-x-1)/3=(x-1/3)

and y= (2(2y-x-1)+2x-y)/3=(y-2/3) therefore, x and

y are easily recovered.

 LSB of x is '1', LSB of y is '1': LSB of x' is '1' and LSB

of y' is '1' => x*=x’-1 and y*=y’-1. Inserting these in

equation (3) we get x= (2(2x-y-1) +2y-x-1)/3=(x-1)

and y= (2(2y-x-1)+2x-y-1)/3=(y-1) therefore,

neither x nor y are recovered.

From the above analysis, it is clear that for the first three

cases the pixels are easily recovered and for odd pairs case,

pixels cannot be recovered. Hence, the above equations (1)

and (2) are only used for the first three cases defined above.

3. WATERMARK EMBEDDING

To realize RCM-RW, we consider an 8-bit input. The goal is to

develop hardware architecture of the given input.

Watermark bit is inserted into the LSBs of the transformed

pixel pair values (x’, y’). The LSBs of the first transformed

pixel value (x’) is used to indicate whether a pair is

transformed or not, and the second pixel value (y’) is used

for watermark embedding. Data flow diagram of watermark

embedding is summarized in Fig-1. Next, for each pair of

pixel values, two conditions (x, y) ∈ DC are checked. If the

pixel pair (x, y) do not belongs to Dc, Step 3 in Fig-1 is

followed, else whether the pixel pairs are odd numbers or

not is verified. If both of them are odd in nature, Step 2 is

followed; else Step 1 is performed for watermark embed-

ding. The whole process is repeated until all the pixel pairs

are covered. Finally, the watermarked data are collected

through multiplexer.

 Step-3

 No

 Yes Step-1

 No

 Yes

 Step-2

 WATERMARKED PIXELS

 Fig -1: Encoder Flowchart

STEP-1: This step is designed for those pixel pairs that

belong to domain that has been previously explained i.e. Dc

and are not odd values. This step is used to demonstrate the

RCM algorithm forward transform equations. For example,

x’=2x-y (where x, y are the pair of input pixels), here we see

that pixel (x) is first multiplied by 2, which can be

demonstrated in VHDL by designing an 8-bit left shift

register by using shift operations. Further, the multiplied

pixel is subtracted with y pixel value. Here, we use a 9-bit

subtractor because the multiplied value coming from an 8-

bit left shift register is not necessarily an 8-bit value. After

subtraction, output is first right shifted to discard the LSB

and then left shifted, and finally 1 is padded in the LSB.

These two blocks explain that after the forward transform,

pixels are processed in such a way that will help the decoder

on other side to differentiate between pixel values. Padding

1 in last block indicates that the pixel value (x) is

transformed using RCM. Similarly, same explanation is valid

for pixel value y(equation is y’=2y-x) , only difference being-

last block i.e. instead of padding 1, we insert digital

watermark in the LSB of y’.

8-bit

input

pair

 (x, y) €

Dc

DC ?

Set LSB of

x to ‘0’.

y’ =y

(x, y) are

odd

odd?

x’=2x-y

Interchanging

LSB of x’ to ‘1’.

y’=2|y’/2|+w

Set LSB of x

to ‘0’.

y’=2|y/2|+w

MUX

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6059

 x’

x

 y’

y
 Watermark (w)
 Fig -2: Data path for Step-1.

STEP-2: This step is designed for those pair of pixels that

belong to Dc domain and are odd valued. Considering pixel

(x) first, since it is an odd valued pixel LSB should be 1. The

main working of this step is to remove 1 from the LSB of

pixel (x) because RCM equations do not give the original

pixel back for odd valued pair of pixels. If output of an

encoder has 1 in its LSB (for x pixel), then according to step-

1 it is denoted as transformed pixel. Therefore, to clear this

contradiction the odd valued pixel is first right shifted and

then left shifted using logical shift operators in VHDL.

Similarly for y pixel, first it is right shifted and the left shifted

to insert the digital watermark bit in its LSB.

 x x’

 y y’

 y’ Fig -1: Name of the figure

 Watermark (w)

 Fig -3: Data path for Step-2.

STEP-3: This step is designed for those pixels that do not

belong to domain Dc. Since it only processes those pixels that

do not belong to domain Dc, it does not care about the nature

of pixel value. Pixel (x) from a pair is first right shifted to

discard the LSB and this discarded LSB is also taken as the

output of this step along with pair of pixel and then left

shifted to get the output. For pixel y, it is passed through the

encoder as it is with no watermarks because, y pixel does not

belong to Dc domain.

 LSB

 x x’

y No change y’

 Fig -4: Data path for Step-3.

 4. WATERMARK EXTRACTION
 Step-1’

 Yes

 No

 Step-2’

 No

 Yes

 RECOVERED
 Step-2’ PIXELS

 Fig -5: Decoder Flowchart

The input to the watermark extraction block is an 8- bit that

consists of Step-1’, Step-2’, Step-3’ and condition check block.

If the LSB of x’ is 1, then Step-1’ is performed regardless of

inclusion of the pair in Dc domain. If x’ is not equal to 1, then

the condition of inclusion of pairs in Dc domain is checked, if

the pairs belong to Dc domain than step-2’ is performed else

step-3’. All of these different conditions checking and

individual data path multiplexing for watermark extraction

Left shift by

‘1’ bit with

‘0’ padding

Subtractor
Left shift

by ‘1’ bit

with ‘1’

padding

Left shift

by ‘1’ bit

with ‘0’

padding

Subtractor

Right

shift by

‘1’ bit to

discard

LSB

Left shift

by ‘1’ bit

with ‘w’

padding

Right shift

by ‘1’ bit to

discard LSB

Left shift by

‘1’ bit with

‘0’ padding

Right shift

by ‘1’ bit to

discard LSB

Left shift by

‘1’ bit with

‘w’ padding

Right shift by

‘1’ bit to

discard LSB

or divide by 2

Left shift by

‘1’ bit with ‘0’

padding or

multiply by 2

Right

shift by

‘1’ bit to

discard

LSB

8 bit

embedded

pair

LSB

of

x’=1?

1. Extract the LSB of y’ as watermark bit.

2. Set LSB of (x’,y’) as ‘0’.

3. Recover original pair (x,y) by inverse

transform.

1. Extract the LSB of y’ as watermark bit.

2. Set LSB of (x’,y’) as ‘0’.

3. Recover original pair (x,y) by inverse

transform.

1. Extract the LSB of y’

as watermark bit.

2. Set LSB of (x’,y’) as

‘0’.

3. Recover original pair

(x,y) by inverse

transform.

1. Extract the LSB

of y’ as watermark

bit.

2. Set LSB of (x’, y’)

as ‘0’.

3. Recover original

pair (x, y) by

inverse transform.

(x’, y’)

€ Dc

Set LSB of x’ with its

corresponding true

value extracted from

watermark sequence.

1. Extract the LSB of

y’ as watermark bit.

2. Recover pixel

pair (x, y) by setting

LSB of (x’, y’) to ‘1’.

 MUX

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6060

unit are shown in Fig-5. The hardware realization of

individual step is given below.

Step-1’: The step is designed for those output pairs of

encoder whose x’ valued pixel has 1 in its LSB; whether the

pair lies in Dc domain or not it doesn’t matter. In this step,

initially the LSBs of pixel (x’) and pixel (y’) are removed so

that before applying the reverse transformation these pixels

are converted to original transformed values. This is done by

first right shifting the pixel value to discard the LSB (which is

1 in pixel (x’) and watermark bit in pixel (y’)) and the left

shifting the pixel value. The right shifting and left shifting is

done by shift operators present in VHDL. After this, reverse

transform equation is applied to these pixels to get original

pixel pair back. Let’s say the equation is for example,

x=2x’+y’/3. To process the given equation initially, a 9-bit

shift register is designed to perform multiplication by 2 and

the result is given to a 9-bit adder, where the addition with y’

pixel take place and finally, result of the adder is given

divider, where division by 3 occurs. Divider is designed such

that it can take 12-bit input and give 8-bit final output so that

we get the grey scale pixel back. Similarly, for equation

y=2y’+x’/3 same modules are designed and working is also

the same. The only difference being, along with original pixel

we also get back the embedded watermark bit.

 x
 x’

 y
 y’
 Watermark (w)

Fig -6: Data path for step-1 of decoder.

Step-2’: This step is designed for those pixel pairs, which

belongs to Dc domain and LSB of pixel (x’) is not 1. Since LSB

of pixel (x’) is not one, no reverse transform equations are

applied to these pairs. To get the original pixel pair back, first

an 8-bit pixel is right shifted to remove the LSB (for pixel (y’)

watermark bit is removed) and then left shifted with 1

padding. Padding 1 in LSB is done to get the odd valued pair

back since, we saw in encoder, for odd valued pair no

transformation was done. Hence, these pixel are obtained

back without applying any reverse transformation.

 x’ x y

 y’ y

 Watermark (w)

 Fig -7: Data path for step-2 of decoder.

 Step-3’: This step is designed for those output pairs of

encoder which do not belong to Dc and LSB of pixel (x’) is

not 1. Input to this step is the resultant output pair of

encoder step-3. In this step, pixel (x’) is first right shifted to

remove the LSB and then left shifted with padding it with

LSB out that we got from encoder step-3 output. Pixel (y’) is

passed as it is through the decoder.

 x’ x

 x

y’ No change y

 Fig -8: Data path for step-3 of decoder.

Outputs of all these steps are given to the multiplexer input

to choose single input at a time. The selection is based on

two conditions: input pixel pair belongs to Dc domain or not

and pixel pairs are odd or not. Two 4:1 multiplexers are

designed separately with same select lines, one for x’ pixel

and one for y’ pixel. Finally, depending on the select lines we

get the final output of decoder i.e. original pixel pair along

with watermark bits.

Right

shift

by 1

bit

Left

shift

by 1

bit

Left

shift

by 1

bit

Adder Divider

Right

shift

by 1

bit

Left

shift

by 1

bit

Left

shift

by 1

bit

Adder Divider

Right Shift

by ‘1’ bit

Left Shift by

‘1’ bit with ‘1’

padding

Right Shift

by ‘1’ bit

Left Shift by

‘1’ bit with ‘1’

padding

Right Shift

by ‘1’ bit

Left shift by ‘1’

bit with

extracted

payload bit

padding

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6061

6. RESULTS

6.1 Encoder

Fig -9: Device Utilization Summary for encoder.

Above figure summarizes the hardware realization of the

design that was developed. RTL schematic of the encoder

was developed by coding in VHDL. All the steps that have

been explained in detail in the above sections are designed

using Xilinx ISE design suite and the simulations are also

done in the same software by creating a VHDL test-bench

code for the whole design. The simulation result describes

the final output of the encoder when they are provided with

8 pairs(x, y) of input pixels simultaneously. VHDL test-bench

code is created to give input to the encoder and output result

is presented in the form of waveforms as shown below.

Fig -10: Simulation results of encoder.

Given waveform summarizes the working of encoder. Blue

circle indicates input pixel pair (169,157) given to the

encoder along with watermark bit (in this case it is 1,

designated by w-mark in the waveform). Green circle

indicates output of encoder i.e. the final watermarked pixel

pair. Same explanation can be given to various input pairs

given to the encoder.

6.2 Decoder

Fig -11: Device Utilization Summary for decoder

Above figure gives summarizes the hardware realization of

the design that was developed. RTL schematic of the decoder

was developed by coding in VHDL. All the steps that have

been explained in detail in the above sections are designed

using Xilinx ISE design suite and the simulations are also

done in the same software by creating a VHDL test-bench

code for the whole design. The simulation result describes

the final output of the decoder when they are provided with

8 pairs (x’, y’) of input pixels simultaneously. VHDL test-

bench code is created to give input to the decoder and output

result is presented in the form of waveforms as shown

below.

Fig -12: Simulation result of decoder.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6062

Given waveform summarizes working of decoder. Blue circle

indicates input pixel pair given to the decoder (168,157) and

green circle indicates output pixel pair of the decoder along

with watermark bit (in this case it is 1, designated by w-

mark in the waveform). Therefore, we get the original pixel

pair back from the decoder along with extracted watermark

bit.

7. CONCLUSION

This paper highlights low computational reversible digital

watermarking technique and uses reversible contrast

mapping as an algorithm to design FPGA based architecture

for watermark embedding and extraction. Encoder and

decoder are designed separately using VHDL and simulation

results are also obtained separately. From the simulation

results, it is clear that RCM maintains the robustness of

image pixel pair because, after the consecutive process of

data embedding and extracting, we were able to get the

original pixel pair back with very less distortion.

ACKNOWLEDGEMENT

We would like to thank our project guide Ms. Uttara bhatt for
helping us to understand the topic theoretically and
practically and guiding us throughout the project.

REFERENCES

[1] Roberto Caldelli, Francesco Filippini & Rudy Becarelli,

”Reversible Watermarking Techniques: An Overview

and a Classification”, EURASIP Journal on Information

Security volume 2010

[2] Hirak Kumar Maity, Santi P. Maity, “FPGA

Implementation for Modified RCM-RW on Digital

Images”

[3] Dinu Coltuc and Alain rfremeaub, “Simple Reversible

Watermarking Schemes”

[4] D. Coltuc and J.-M. Chassery, “Very fast watermarking by

reversible contrast mapping”, IEEE Signal Process. Lett.

14 (2007) 255–258

[5] H. K. Maity and S. P. Maity, “FPGA implementation of

reversible watermarking in digital images using

reversible contrast mapping”, J. Syst. Softw. 96 (2014)

93–104.

[6] Sudip Ghosh, Nachiketa Das, Subhajit Das, Santi P,

Maity, Hafizur Rahaman, “FPGA and SoC based VLSI

architecture of reversible watermarking using rhombus

interpolation by difference expansion”, 2014 Annual

IEEE India Conference (INDICON)

[7] Sambaran Hazra, Sudip Ghosh, Sayandip De, Hafizur

Rahaman, “FPGA implementation of semi-fragile

reversible watermarking by histogram bin shifting in

real time”, Received: 14 October 2016 / Accepted: 3

February 2017

https://link.springer.com/article/10.1155/2010/134546#auth-1
https://link.springer.com/article/10.1155/2010/134546#auth-2
https://link.springer.com/article/10.1155/2010/134546#auth-3
https://link.springer.com/journal/13635
https://link.springer.com/journal/13635
https://ieeexplore.ieee.org/author/37532778000
https://ieeexplore.ieee.org/author/37532778000
https://ieeexplore.ieee.org/author/37085351088
https://ieeexplore.ieee.org/author/37085351088
https://ieeexplore.ieee.org/author/37285602900
https://ieeexplore.ieee.org/author/37285602900
https://ieeexplore.ieee.org/xpl/conhome/7016294/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7016294/proceeding

