
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6007

Toxic Comment Classification using Natural Language Processing

A. Akshith Sagar, J. Sai Kiran

---***--

Abstract - Text classification has become one of the most
useful applications of Deep Learning, this process includes
techniques like Tokenizing, Stemming, and Embedding. This
paper uses these techniques along with few algorithms, that
are used to classify online comments based on their level of
toxicity. We proposed a neural network model to classify the
comments and compared the model’s accuracy with some
other models like Long Short Term Memory (LSTM), Naive
Bayes Support Vector Machine, Fasttext and Convolutional
Neural Network .The comments are first passed to a tokenizer
or vectorizer to create a dictionary of words, then an
embedding matrix is created after which it is passed to a
model to classify. The proposed model achieved an accuracy of
98.15%.

Key Words: Toxic comment detection, Long short term
Memory, Convolutional Neural Networks, Naive Bayes,
Support Vector Machine, Fasttext.

1. INTRODUCTION

Social media is a place where a lot of discussions happen,
being anonymous while doing so has given the freedom to
many people to express their opinions freely. But people
who disagree with a point of view extremely can misuse this
freedom sometimes. Sharing things that you care about will
become a difficult task with this constant threat of
harassment or toxic comments online. This will eventually
lead to people not sharing their ideas online and stop asking
for other people’s opinion on them. Unfortunately, the social
media platforms face these issues all the time and find it
difficult to identify and stop these toxic remarks before it
leads to the abrupt end of conversations.

In this paper, we will be using Natural Language
Processing with Deep neural networks to solve this problem
of identifying the toxicity of online comments. Word
embeddings will be used in conjunction with recurrent
neural networks with Long Short Term Memory (LSTM),
Convolutional Neural Networks (CNN), and Naive Bayes
(NB)-Support Vector Machine (SVM) and Fasttext separately
and see which model fits and works best.

2. PRE-PROCESSING TEXT

Pre-processing of the text is the first step that is performed
on the dataset. The dataset is cleaned and prepared for the
classification tasks by removing punctuation, imputing
missing values, normalisation, etc. Besides these common
preprocessing functions there are other techniques that are
used specifically for deep learning classification.

2.1 Tokenization
Tokenization is the process of converting a text corpus to a
set of distinct tokens of any size. These tokens are usually
numbers which are assigned to the words present in the text.
As a computer cannot understand a language, this method
helps us to map all the words to distinct numbers which
makes it easier for the computer to understand. So the result
of this process is a dictionary of fixed size that contains a
mapping from words to numbers.

2.2 Vectorization
 Vectorization is a technique in which words are converted
to feature vectors. This paper uses the Term Frequency
Inverse Document Frequency Vectorization (TFIDF). TFIDF
Vectorization converts the words in the document to a
vector that can be used as input to the estimator. It can be
used to learn how important a word is to a document. This is
done by assigning a score to each word in the document.
Term Frequency can be defined as follows: -

 TF(w) = (Number of times word w appears in a document)
/ (Total number of words in the document)

Inverse Document Frequency is defined as follows: -
IDF(w) = log (Total number of documents / Number of
documents with word ‘w ‘in it).

The TF-IDF score is simply the product of these two
frequencies. i.e.

TF-IDF(w) = TF(w) * IDF(w)

2.3 Word Embeddings
Every word in the dataset is embedded into feature

vectors, this is done by creating an embedding matrix. An
embedding matrix is a list of words and their corresponding
embeddings. Embeddings usually refer to n-dimensional
dense vectors. The embedding matrix is of shape (vocab_size,
embed_size). Here vocab_size is the number of words in the
dictionary that are obtained from the tokenization method
and embed_size is the number of features into which the
words will be embedded. There are a lot of pre-trained word
embeddings available with different embedding sizes like
the GloVe (Global Vectors for Word Representation),
word2vec, Fasttext-crawl, etc. This paper uses fasttext-
crawl-300d-2m for the embedding matrix. This embedding
matrix is then passed to different algorithms.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6008

3. ALGORITHMS

3.1 Long Short Term Memory (LSTM)
 Recurrent Neural Networks (RNN) are neural networks
that contain cyclic connections. The output of a given hidden
layer is fed back to itself in an RNN to remember some
information as the memory from previous computations.
This makes RNNs a powerful tool for sequential data like
text, video, and speech.

Long Short Term Memory (LSTM) is an RNN that can learn
long term dependencies which is something a traditional
RNN finds difficult to do. An LSTM model, like RNN, has a
chain-like architecture where each unit of this repeating
structure is called an LSTM cell.

An LSTM cell contains an input gate, an output gate and
a forget gate that regulates the data which is flown into and
outside of the cell. The forget gate decides what information
it's going to discard from the current cell. The input gate
then decides what new information is going to be added to
modify the current state of the memory and finally, the
output gate decides what information leaves the cell.

3.2 Convolutional Neural Network
 Convolutional Neural Network (CNN) is a deep neural
network that is usually applied to images. CNNs were
inspired by the human brain. Like the human brain, CNN
consists of interconnected neurons in different layers. Each
neuron in a layer is a perceptron that performs some
computation to the weights that are passed to it. Although
CNNs are mostly used for image classification, they can also
be used for text classification by passing the feature vectors
of input text to CNN. The CNN then computes weights for
different neurons which are used to determine a function
that maps the feature vectors to the output. A CNN usually
consists of the following layers: -

a) Convolutional Layer: - The purpose of a Convolutional
layer is to extract and learn features from the input vectors.
A convolutional layer computes outputs of neurons by
performing dot product operations to the weights and
passes this output to an activation function.

b) Activation Function: - The output of a convolutional layer
is passed to an activation function. An activation function is
used to add non-linearity to the output of the Convolutional
Layer. The most common activation function is the Rectified
Linear Unit (ReLu) function. A ReLu function can be defined
as follows:
 f(x) = max (0, x)

c)Pooling Layer: - A pooling layer is used to reduce the
dimensions of the input by preserving the important
features. A Convolutional layer is often succeeded by a
pooling layer to reduce the size and number of parameters
from the previous layer.

3.3 SVM with NB features (NBSVM)
 Naive Bayes classifier algorithm is based on Bayes theorem
which determines the posterior probability of an event
occurring based on prior knowledge or evidence.
Multinomial Naive Bayes an instance of NB classifier which
uses a multinomial distribution for each feature of data.

Support Vector Machine (SVM): SVM works on the principle
of finding hyperplanes that distinctly classify the data units
when you plot them onto an n-dimensional graph(here the n
refers to the number of features of the data).

In Naive Bayes -Support Vector Machine the probabilities
calculated in MNB are then fed to SVM to classify. NBSVM is
observed to give better results than a simple NB classifier or
SVM classifier when used separately.

3.4 Fasttext
 Fasttext is a text classification library developed by
Facebook. Fasttext can be used to learn word embeddings,
create supervised or unsupervised classification models
from these word embeddings. Fasttext has its word
embeddings called Fasttext crawl which is trained on around
600 Billion tokens. These word embeddings are open and
can be downloaded by anyone for their use.
Fasttext has multiple pre-trained models to choose from
depending on the nature of the problem. In this paper we use
the default supervised classifier model.

4. IMPLEMENTATION

Keras framework was used to implement the LSTM and CNN
models. Keras is an open-sourced neural network library
built on python which provides user-friendly, high-level APIs
which enable easy implementations of different deep neural
network algorithms.

The dataset used for classification in this paper is given as
part of the competition hosted by Jigsaw and it contains
159571 comments taken from Wikipedia. Each comment is
classified into one of 6 labels based on their level of toxicity.
The results are then validated against a test data set of

153164 new examples.

4.1 Naive Bayes-Support Vector Machines
 In this approach, we first compute TF-IDF scores for the
words in the train data using the TF-IDF Vectorizer. This
generates a matrix that contains an array of scores for each
training example.
Then we use the Multinomial Naive Bayes theorem on each
column of the labels to generate the NB probabilities from
the TF-IDF matrix. This is then fed to SVM to predict the
probabilities of each label.
After predicting the test set NB-SVM achieved an accuracy of
97.61 %.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6009

4.2 Fasttext
 The fasttext library takes the input in a text format, so all
the comments from the train data are converted to a text
document with each training example starting with ’
__label__’ followed by the respective label of the comment
and then the comment itself. This text file is fed into the
fasttext model and after fine-tuning the hyper parameters of
the number of epochs and learning rate to 5 and 0.1
respectively, the model achieved an accuracy of 95.4%.

4.3 Long Short Term Memory
 The first step of this algorithm is tokenization. This
generates a sequence of numbers for each comment. As each
comment may vary in their lengths, the output of
tokenization is padded to a fixed length of 200. This is then
passed to a Keras Embedding Layer which learns
embeddings. The embedding size used was 300. The output
of this embedding layer is then fed to an LSTM of 60 units,
which then returns sequences.

This is then passed to a Pooling Layer, Dense Layer of 60
units, Dropout Layer, and finally to a Dense layer of 6 units
with a sigmoid activation function. This predicts the
probabilities of 6 classes.

fig 1 LSTM Architecture

This model of LSTM achieved an accuracy of 96.92%.

4.4 Convolutional Neural Networks
The first few steps of this algorithm are the same as that of
LSTM. But here, instead of allowing the embedding layer to
learn the weights by itself, we provide the Embedding Layer
with a matrix extracted from the fasttext-crawl file. After the
embedding layer, we then use a series of convolutional
layers in conjunction with pooling layers. This paper uses 4
convolutional layers and 4 max-pooling layers. The output of
these layers is concatenated and then Flattened to an array,
which is finally fed to a Dense layer of 6 units with a sigmoid
activation function, which predicts the probabilities of each
label.

fig 2 CNN Architecture

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6010

This CNN model achieved an accuracy of 98.13%.

5. CONCLUSION

With the Internet being a platform accessible to everyone, it
is important to make sure that people with different ideas
are heard without the fear of any toxic and hateful remarks.
And after analyzing various approaches to solve this
problem of classification of toxic comments online, it is
found that CNN model works slightly better than LSTM and
NB-SVM with the accuracy of 98.13%. Future scope for this
analysis would be integrating such classification algorithms
into social media platforms to automatically classify and
censor or toxic comments.

REFERENCES

[1] Siwei Lai, Liheng Xu, Kang Liu, Jun Zhao, ” Recurrent

Convolutional Neural Networks for Text Classification”
Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, Austin, Texas, 2015.

[2] Sida Wang and Christopher D. Manning, “Baselines and
Bigrams: Simple, Good Sentiment and Topic
Classification”, Stanford, CA,

[3] Mujahed A. Saif, Alexander N. Medvedev, Maxim A.
Medvedev, and Todorka Atanasova, “Classification of
online toxic comments using the logistic regression and
neural networks models”, AIP Conference Proceedings
2048, 060011 (2018)

[4] R. Nicole, “Title of paper with only first word
capitalized,” J. Name Stand. Abbrev., in press.

[5] Sepp Hochreiter, Jurgen Schmidhuber, “LONG SHORT-
TERM MEMORY”, Neural Computation 9(8):1735-1780,
1997

[6] Navaney, P., Dubey, G., &Rana, A. (2018). "SMS Spam
Filtering Using Supervised Machine Learning
Algorithms." 2018 8th International Conference on
Cloud Computing, Data Science & Engineering
(Confluence).

