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Abstract - Text classification has become one of the most 
useful applications of Deep Learning, this process includes 
techniques like Tokenizing, Stemming, and Embedding. This 
paper uses these techniques along with few algorithms, that 
are used to classify online comments based on their level of 
toxicity. We proposed a neural network model to classify the 
comments and compared the model’s accuracy with some 
other models like Long Short Term Memory (LSTM), Naive 
Bayes Support Vector Machine, Fasttext and Convolutional 
Neural Network .The comments are first passed to a tokenizer 
or vectorizer to create a dictionary of words, then an 
embedding matrix is created after which it is passed to a 
model to classify. The proposed model achieved an accuracy of 
98.15%. 
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1. INTRODUCTION 
 
Social media is a place where a lot of discussions happen, 
being anonymous while doing so has given the freedom to 
many people to express their opinions freely. But people 
who disagree with a point of view extremely can misuse this 
freedom sometimes. Sharing things that you care about will 
become a difficult task with this constant threat of 
harassment or toxic comments online. This will eventually 
lead to people not sharing their ideas online and stop asking 
for other people’s opinion on them. Unfortunately, the social 
media platforms face these issues all the time and find it 
difficult to identify and stop these toxic remarks before it 
leads to the abrupt end of conversations. 
 

In this paper, we will be using Natural Language 
Processing with Deep neural networks to solve this problem 
of identifying the toxicity of online comments. Word 
embeddings will be used in conjunction with recurrent 
neural networks with Long Short Term Memory (LSTM),  
Convolutional Neural Networks (CNN), and Naive Bayes 
(NB)-Support Vector Machine (SVM) and Fasttext separately 
and see which model fits and works best. 

 
2. PRE-PROCESSING TEXT 
 
Pre-processing of the text is the first step that is performed 
on the dataset. The dataset is cleaned and prepared for the 
classification tasks by removing punctuation, imputing 
missing values, normalisation, etc.  Besides these common 
preprocessing functions there are other techniques that are 
used specifically for deep learning classification. 

2.1 Tokenization 
Tokenization is the process of converting a text corpus to a 
set of distinct tokens of any size. These tokens are usually 
numbers which are assigned to the words present in the text. 
As a computer cannot understand a language, this method 
helps us to map all the words to distinct numbers which 
makes it easier for the computer to understand. So the result 
of this process is a dictionary of fixed size that contains a 
mapping from words to numbers. 
 

2.2 Vectorization 
    Vectorization is a technique in which words are converted 
to feature vectors. This paper uses the Term Frequency 
Inverse Document Frequency Vectorization (TFIDF). TFIDF 
Vectorization converts the words in the document to a 
vector that can be used as input to the estimator. It can be 
used to learn how important a word is to a document. This is 
done by assigning a score to each word in the document.  
Term Frequency can be defined as follows: - 
 
   TF(w) = (Number of times word w appears in a document) 
/ (Total number of words in the document) 
 
Inverse Document Frequency is defined as follows: - 
IDF(w) = log (Total number of documents / Number of 
documents with word ‘w ‘in it). 
 
The TF-IDF score is simply the product of these two 
frequencies. i.e. 
 
TF-IDF(w) = TF(w) * IDF(w) 
 

2.3 Word Embeddings  
Every word in the dataset is embedded into feature 

vectors, this is done by creating an embedding matrix. An 
embedding matrix is a list of words and their corresponding 
embeddings. Embeddings usually refer to n-dimensional 
dense vectors. The embedding matrix is of shape (vocab_size, 
embed_size). Here vocab_size is the number of words in the 
dictionary that are obtained from the tokenization method 
and embed_size is the number of features into which the 
words will be embedded. There are a lot of pre-trained word 
embeddings available with different embedding sizes like 
the GloVe (Global Vectors for Word Representation), 
word2vec, Fasttext-crawl, etc. This paper uses fasttext-
crawl-300d-2m for the embedding matrix. This embedding 
matrix is then passed to different algorithms. 
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3. ALGORITHMS 
 

3.1 Long Short Term Memory (LSTM) 
   Recurrent Neural Networks (RNN) are neural networks 
that contain cyclic connections. The output of a given hidden 
layer is fed back to itself in an RNN to remember some 
information as the memory from previous computations. 
This makes RNNs a powerful tool for sequential data like 
text, video, and speech. 

 
Long Short Term Memory (LSTM) is an RNN that can learn 
long term dependencies which is something a traditional 
RNN finds difficult to do. An LSTM model, like RNN, has a 
chain-like architecture where each unit of this repeating 
structure is called an LSTM cell. 
 
An LSTM cell contains an input gate, an output gate and 
a forget gate that regulates the data which is flown into and 
outside of the cell. The forget gate decides what information 
it's going to discard from the current cell. The input gate 
then decides what new information is going to be added to 
modify the current state of the memory and finally, the 
output gate decides what information leaves the cell.  

3.2 Convolutional Neural Network 
   Convolutional Neural Network (CNN) is a deep neural 
network that is usually applied to images. CNNs were 
inspired by the human brain. Like the human brain, CNN 
consists of interconnected neurons in different layers. Each 
neuron in a layer is a perceptron that performs some 
computation to the weights that are passed to it. Although 
CNNs are mostly used for image classification, they can also 
be used for text classification by passing the feature vectors 
of input text to CNN. The CNN then computes weights for 
different neurons which are used to determine a function 
that maps the feature vectors to the output. A CNN usually 
consists of the following layers: - 

a) Convolutional Layer: - The purpose of a Convolutional 
layer is to extract and learn features from the input vectors. 
A convolutional layer computes outputs of neurons by 
performing dot product operations to the weights and 
passes this output to an activation function.  
 
b) Activation Function: - The output of a convolutional layer 
is passed to an activation function. An activation function is 
used to add non-linearity to the output of the Convolutional 
Layer. The most common activation function is the Rectified 
Linear Unit (ReLu) function. A ReLu function can be defined 
as follows: 
        f(x) = max (0, x) 
 
c)Pooling Layer: - A pooling layer is used to reduce the 
dimensions of the input by preserving the important 
features. A Convolutional layer is often succeeded by a 
pooling layer to reduce the size and number of parameters 
from the previous layer. 

3.3 SVM with NB features (NBSVM) 
   Naive Bayes classifier algorithm is based on Bayes theorem 
which determines the posterior probability of an event 
occurring based on prior knowledge or evidence. 
Multinomial Naive Bayes an instance of NB classifier which 
uses a multinomial distribution for each feature of data.  
 
Support Vector Machine (SVM): SVM works on the principle 
of finding hyperplanes that distinctly classify the data units 
when you plot them onto an n-dimensional graph(here the n 
refers to the number of features of the data). 
 
In Naive Bayes -Support Vector Machine the probabilities 
calculated in MNB are then fed to SVM to classify. NBSVM is 
observed to give better results than a simple NB classifier or 
SVM classifier when used separately. 

 
3.4 Fasttext 
   Fasttext is a text classification library developed by 
Facebook. Fasttext can be used to learn word embeddings, 
create supervised or unsupervised classification models 
from these word embeddings. Fasttext has its word 
embeddings called Fasttext crawl which is trained on around 
600 Billion tokens. These word embeddings are open and 
can be downloaded by anyone for their use.  
Fasttext has multiple pre-trained models to choose from 
depending on the nature of the problem. In this paper we use 
the default supervised classifier model. 
 

4. IMPLEMENTATION 
 
Keras framework was used to implement the LSTM and CNN 
models. Keras is an open-sourced neural network library 
built on python which provides user-friendly, high-level APIs 
which enable easy implementations of different deep neural 
network algorithms.     
 
The dataset used for classification in this paper is given as 
part of the competition hosted by Jigsaw and it contains 
159571 comments taken from Wikipedia. Each comment is 
classified into one of 6 labels based on their level of toxicity. 
The results are then validated against a test data set of 

153164 new examples. 
 
4.1 Naive Bayes-Support Vector Machines 
   In this approach, we first compute TF-IDF scores for the 
words in the train data using the TF-IDF Vectorizer. This 
generates a matrix that contains an array of scores for each 
training example. 
Then we use the Multinomial Naive Bayes theorem on each 
column of the labels to generate the NB probabilities from 
the TF-IDF matrix. This is then fed to SVM to predict the 
probabilities of each label. 
After predicting the test set NB-SVM achieved an accuracy of 
97.61 %. 
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4.2 Fasttext 
   The fasttext library takes the input in a text format, so all 
the comments from the train data are converted to a text 
document with each training example starting with ’ 
__label__’ followed by the respective label of the comment 
and then the comment itself. This text file is fed into the 
fasttext model and after fine-tuning the hyper parameters of 
the number of epochs and learning rate to 5 and 0.1 
respectively, the model achieved an accuracy of 95.4%.  
 

4.3 Long Short Term Memory 
   The first step of this algorithm is tokenization. This 
generates a sequence of numbers for each comment. As each 
comment may vary in their lengths, the output of 
tokenization is padded to a fixed length of 200. This is then 
passed to a Keras Embedding Layer which learns 
embeddings. The embedding size used was 300. The output 
of this embedding layer is then fed to an LSTM of 60 units, 
which then returns sequences. 
 
This is then passed to a Pooling Layer, Dense Layer of 60 
units, Dropout Layer, and finally to a Dense layer of 6 units 
with a sigmoid activation function. This predicts the 
probabilities of 6 classes.  
 

 
fig 1 LSTM Architecture 

 
This model of LSTM achieved an accuracy of 96.92%. 
 

4.4 Convolutional Neural Networks 
The first few steps of this algorithm are the same as that of 
LSTM. But here, instead of allowing the embedding layer to 
learn the weights by itself, we provide the Embedding Layer 
with a matrix extracted from the fasttext-crawl file. After the 
embedding layer, we then use a series of convolutional 
layers in conjunction with pooling layers. This paper uses 4 
convolutional layers and 4 max-pooling layers. The output of 
these layers is concatenated and then Flattened to an array, 
which is finally fed to a Dense layer of 6 units with a sigmoid 
activation function, which predicts the probabilities of each 
label.  
 

 
fig 2 CNN Architecture 
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This CNN model achieved an accuracy of 98.13%. 

 
5. CONCLUSION 
 
With the Internet being a platform accessible to everyone, it 
is important to make sure that people with different ideas 
are heard without the fear of any toxic and hateful remarks. 
And after analyzing various approaches to solve this 
problem of classification of toxic comments online, it is 
found that CNN model works slightly better than LSTM and 
NB-SVM with the accuracy of 98.13%.  Future scope for this 
analysis would be integrating such classification algorithms 
into social media platforms to automatically classify and 
censor or toxic comments. 
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