
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5196

Implementation of Data Handling Feature for Runtime Process Crash

Prajwal G G1, Shreyas B H2, Ramya S3

,1Prajwal G G, Dept. of Electronics and Communication Engineering, R V College of Engineering, Bengaluru 560059
2Shreyas B H, Dept. of Computer Science Engineering, R V College of Engineering, Bengaluru 560059

3Ramya S, Assistant Professor, Dept. of Electronics and Communication Engineering, R V College of Engineering,
Bengaluru 560059

---***---
Abstract - The work carried out in this project consists of
multiple processes which runs in parallel. The two processes
are user interface process and object management process.
These two processes are initialised by the initialise process.
User interface process is implemented using glade interface
design tool which is based on gtk. The object management
process is used to create the objects and signal handler is
written for handling SIGTERM signal.

The results obtained shows that, a total of 10000 objects of
class port is created and these objects are written to a text file
named sigtermfile.txt once the object management process is
terminated using SIGTERM signal from the terminal.

Key Words: Process termination, Signal Handling,
SIGTERM signal, SIGSEGV signal, Glade.

1. INTRODUCTION

Computer programming has become inevitable part of
communication technology. While developing any
application software care is taken to avoid the software bugs
and logical errors. In spite of testing and improving the
coding, bugs in the codes cannot be eliminated by hundred
percent. Therefore, process crash may occur due to logical
errors or entering invalid data by the user during the run
time of the application software.

1.1 Methodology

The initialize process will initialize the user interface process
and object management process. The initialize process will
monitor the other two processes. The user interface process
and object management process are the child processes of
initialize process.

The user interface process contains the authentication part,
port status change option and service creation option. The
service can be created only after the login procedure is
completed. The user interface process sends
acknowledgement for the initialize process for every ten
seconds. This timing of every ten seconds will be generated
using SIGALRM signal. This signal is used for generating
software interrupt for every ten seconds and the interrupt
handler function will send the acknowledgement in the user

interface process and SIGALRM interrupt handler will check
whether acknowledgement received or not for every ten
second in the initialize process.

User interface process and Initialize process will use sockets
for sending and receiving acknowledgement. The object
management process will create the objects of the port class.
The object management process will create 2500 objects of
each port type objects and a total of 10000 objects. The object
management process will write the objects created during the
runtime of the object management process to a text file
named sigtermfile.txt. The total number of objects created
will be displayed in the terminal during the execution of the
object management process. This will help in verifying
whether all the objects which are created during the runtime
of the object management process are written into text file or
not.

1.2 Literature Review

In [1], authors developed a tool called DRACULA. DRACULA
detects data races occurred dynamically in signal handlers.
Bugs which are harder to detect and reproduce are called
race conditions. Race conditions occur due to signals. Signals
are software interrupts generated by the Unix systems. The
main focus is on data races which caused by signals.
Preliminary evaluation techniques and experience using
DRACULA are also mentioned.

In [2], a model of crash recovery applied in main memory
database has been introduced. This model makes use of the
practical features of the main memory database. The
primary step in the crash recovery is identifying the first
step of the crash such as transaction failure in database.
Crash in transaction implies that transaction did not reach
its endpoint. Hence, inconsistency is observed in the shadow
objects of the database. By executing Rollback operation, the
previous consistent state can be recovered.

In [3], authors developed a tool to protect processes from
kernel crash. Typical methods used for recovering processes
after kernel crash are checking points and recovery box
technique. When the main kernel crashed due to a fatal
error, the processor will send a non-maskable interrupt to all
other processors. Xen Virtual Machine can get the interrupt

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5197

signal. From this point, XenPR will handle the memory
protection using small kernel and jump to the initialization.
Then, small core will have the control of operating system.

In [4], Authors have proposed and developed a system which
makes use of multiple checkpoints and when the system is
about to crash it notices the user and accepts legitimate
inputs. User is able to choose between multiple checkpoints.
There are different methods to handle software failure or
system crash such as restarting the entire systemor
restarting the part of the system, but, if the software failure
is occurring due to invalid user input or faulty logic of the
codes then resting method is not useful.

In [5], System crashes and process crashes are discussed in
the context of loris storage stack. Storage stack is the
component responsible for the storage of the user data in
any computer system. The first step in the process crash is
recovering the metadata from the storage stack.

In [6], Authors developed a software tool, which is named as
anticrasher. The tool is capable of detecting and notifying the
user about the crash. Authors used Flashback technique
which allows user to get into previous point of execution.
Once the user is notified by the tool about the crash the user
will save the unsaved data avoid the accidental data loss due
to crash.

In [7], The proposed work first generalizes the fair
synchronization problem with respect to concurrent objects.
Read or write operations are considered in asynchronous
systems. In asynchronous system any number of processes
may crash. Then, authors introduced a new failure detector.
Authors used it to solve the fair synchronization problem
when processes may crash.

In [8], Authors prioritized crashes based on whether they are
security error crashes or safety error crashes. Security error
crashes introduce vulnerability to codes and easily
exploitable. Authors developed a technique to identify
security error crashes using machine learning based on core
dump files and last branch record data.

2. Implementation

Object management process consists of class definition of
port and this class contains two parameters as its data
members. Therefore, the total number of types in which port
can be created with the parameters is four. The object
management process creates 2500 objects of each type.
Therefore, a total of 10000 objects will be created. The
constructor of the class definition contains the code which is
used for storing the memory address of the created object in
an array.

The object management process is written using object-
oriented programming style. The object management process

contains class definition and also member function which can
be called from the main function. Therefore, this function is
defined under the public section in the class definition of the
port.

The object management process will also contain signal
handler function for handling SIGTERM signal. After receiving
the SIGTERM signal for the object management process, the
object management process will execute the signal handler
function. This signal handler function will open a text _le
named sigtermfile.txt and writes all the object data which are
created during the runtime of the object management
process.

Fig -1: Constructor of the class port

Figure 1 shows the constructor of the class port. The figure
also shows that there are two data members. The data
members are port status and service status. The port status
can have two values as up or down. The service status can
have two values as created or not created.

The constructor of the class is executed whenever the object
of the port class is created. The constructor also displays the
total number of objects created till that time in the terminal.
This count is used for verifying whether all the objects are
written to file or not.

Fig -2: Sending SIGTERM signal for Object Management
Process

Figure 2 shows the procedure for sending SIGTERM signal
for object management process. This figure consists of two
terminals. The on the right consists of running processes and
terminal on the left is used to send SIGTERM signal for the
object management process with the kill command.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5198

3. Results

The object management process runs in parallel with the user
interface process. This process will not interrupt the smooth
running of the user interface process. The object
management process will create the objects of the class port.
The created ports are of four types. The parameters of the
created objects differ with respect to port status and service
creation status.

Figure 2 shows the output of the object management process.
The object management process will create four types of
objects. Each object type is created for 2500 times. Hence, a
total of 10000 objects are created.

Fig -3: Creation of objects by Object Management Process

Once the SIGTERM signal is received for the object
management process, the process will store the data values
of all the 10000 objects which are created during runtime of
the object management process. These object values will be
stored in the text file named sigtermfile.txt.

The object management process creates 2500 objects of each
type and a total of 10000 objects of class port are created
during the runtime of the object management process.
Therefore, there should be 10000 objects data must be
available in the generated text file after receiving the
SIGTERM signal for the object management process.

Fig -4: Text file generated after receiving SIGTERM

The data in the file shows that for the first 2500 objects the
port status is up and service status is created which is same
as the parameters with which the objects are created in the
object management process.

The data in the file shows that the for the objects from 2500
to 5000 the parameters are up for port status and not
created for service status. The same parameters are used to
create the objects in the object management process for the
objects from 2500 to 5000.

Fig -5: Data stored in the text file

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5199

Fig -6: Data stored in the text file

The data in the file shows that for the objects from 2500 to
5000 the port status is up and service status is not created
which is same as the parameters with which the objects
are created in the object management process.

The data in the file shows that the for the objects from 5000
to 7500 the parameters are up for port status and not
created for service status. The same parameters are used to
create the objects in the object management process for the
objects from 5000 to 7500.

Fig -7: Total number of objects stored in the text file

4. CONCLUSION

The objects management process has created 10000 objects
of class port and these object data values are written into a
text file named sigtermfile.txt after receiving SIGTERM
signal. In future, the work can be further extended with the
more number processes and collecting data of the processes
before termination of the process. This technique can be
used for collecting data for debug purpose in case of process
termination by signal.

REFERENCES

[1] Takamitsu Tahara, Katsuhiko Gondow, Seiya Ohsuga

“DRACULA: Detector of Data Races in Signals Handlers”
15th Asia-Pacific Software Engineering Conference,
2008

[2] Tang Yanjun, Luo Wen-hua “A Model of Crash Recovery
in Main Memory Database” International Conference On
Computer Design And Applications, 2010.

[3] Manbiao Wang, Hao Chen “The Design and
Implementation of Process Recovery Mechanism Based
on Xen” International Conference on Business
Computing and Global Informatization, 2011.

[4] Tsozen Yeh, Weian Cheng “Improving Fault Tolerance
through Crash Recovery” International Symposium on
Biometrics and Security Technologies, 2012.

[5] David C. van Moolenbroek, Raja Appuswamy, Andrew S.
Tanenbaum “Integrated System and Process Crash
Recovery in the Loris Storage Stack” IEEE Seventh
International Conference on Networking, Architecture,
and Storage, 2012.

[6] Anil Kumar Karna, Yuting Chen “Anticrasher: Predicting
and Preventing Impending Crashes on Runtime at User
End” International Conference on Advances in
Computing, Communications and Informatics, 2013.

[7] Carole Delporte-Gallet, Hugues Fauconnier, Michel
Raynal “Fair Synchronization in the Presence of Process
Crashes and its Weakest Failure Detector” IEEE 33rd
International Symposium on Reliable Distributed
Systems, 2014.

[8] Shubham Tripathi, Gustavo Grieco, Sanjay Rawat
“Exniffer: Learning to Prioritize Crashes by Assessing
the Exploitability from Memory Dump” 24th Asia-Pacific
Software Engineering Conference, 2017.

