
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3890

Comprehensive Review and History of Web Services APIs

Pruthviraj M Urankar1, Vishalakshi Prabhu H2

1Student, 2Associate Professor
1-2Department of Computer Science and Engineering

1-2R V College of Engineering, Bangalore India
---***---
Abstract - API’s or Application Programming Interfaces are
software’s that enables different applications to communicate
over the Internet. Be it to exchange data/information or to
provide an interface for a functionality or to gain a particular
hardware feature, an API can do it all. An application
programming interface, is basically a means for apps to
borrow from each other features and data. In this era of
internet where every company likes to take its business online
and make it available globally on the click of a touch, it
becomes necessary to supply mechanisms for different
applications with different technologies to interact with each
other. Well-developed APIs are useful tools for aspiring
developers because they can quickly integrate modern
technologies into their new applications (with a limited
amount of code), without the need to rewrite everything from
scratch. In the earlier days Remote Procedure Calls (RPC)
would be mostly used for exchange but it had a downside
where it would expose the code and would be prone to attacks
but with API’s replacing RPC’s it has become easier to handle
requests by also keeping scalability in mind. This paper
performs and in-depth comparative study of these Web Service
API’s, SOAP, REST, RESTful API’s. Such a study will be helpful in
identifying the suitable architecture required for an
application based on the requirements which are widely used
to handle large amounts of data.

Key Words: API, Webservices, REST, RESTful, SOAP, RPC

1. INTRODUCTION

Web architecture have been predominantly client-server
models with them extending to 3-tier based most recently
[1]. Such client-server models help us differentiate client and
servers in order to examine their architectures and help us
identify the interfaces that help both of them interact. Such
models give us the ability to write independent code on both
client and server sides. Here we shall focus on such
interfaces specifically.

1.1 Modern Era of Internet

In this era of internet where every business wants to
reach a larger market through web applications, mobile
applications and businesses increasingly deploying their
services on the internet. It becomes imminent and necessary
to exchange data and information between different services.
Applications may use different technologies under the hood
for example, a web application may be built simple HTML
(Hyper Text Markup Language) and CSS (Cascading Style

Sheets). There may be many other frameworks that such
applications can be built with LAMP (Linux, Apache, MySql,
Php), MEAN (MongoDB, ExpressJS, AngularJS, NodeJS) stack
technologies being one of the few. With new technologies and
framework coming up every other day it becomes
increasingly complicated to either standardize or develop
RPC’s that can be accessed by many applications. Therefore, a
standardized technology that has the ability to exchange
information without changes to any existing code has been
the need of the hour.

1.2 Application Programming Interfaces

An API (Application Programming Interface) provides us
such an ability by standardizing how data is exchanged
across different platforms. An API provides functionalities
that are independent of their respective implementation or
definitions and hence allowing us develop programs without
the need to compromise on their requirements. How are
API’s used in the real world? For example, consider you are
booking a flight. If you are searching for a flight through a
website, you may need to access their database to get
available flights, but if you were to access the same through
an app from your phone, it becomes difficult for the app and
the database to directly interact. But with API’s, all the app
has to do is to call the API giving it access to the airlines data.
So, API is an interface that like your waiter, runs and delivers
the data from the database to you and vice versa. Moreover,
it facilitates the interaction between the application and the
system. According to Programmable Web, there are 15,000
publicly accessible APIs, and several thousands of more
proprietary APIs that companies use to extend their internal
and external capabilities.

In this article, we discuss client-server architectures
throughout a historical sense, explaining how web-based
systems and implementations adopt and assimilate
innovations and approaches (which are often
complementary, divergent or contradictory). The evolution
of distributed systems began with message passing functions
that were deduced from operating systems need for inter-
process communication, therefore we start by looking at
how data was exchanged between multiple processes. We
then discuss the RPC’s that hid the network communication
behind interfaces and but had problems with practical
implementation due to complicated architectures. We then
look at how web services enabled the loosely coupled
architectures agglomerated with farinaceous components
matching the current requirements of the industry knows as
the web services. We also take a look at how HTTP along

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3891

with JavaScript has enabled us to write independent
programs that can communicate over the network [2]
without the need for dependency through Web API’s. Finally,
we will look at different architectures available for the API’s
currently like REST, SOAP and make a comparative review
these web services APIs.

2. Messaging Systems

In applications based on Distributed Systems, the
components of the system often need to communicate with
other components whenever any event takes place. In the
Client/Server messaging system, clients send a request to the
server side, and then wait a reply [3]. Messaging systems
always involve sending message from one process to another.
Messaging systems involve two main higher-level paradigms
to achieve this: queuing and publisher/subscriber model.
Both these models seek to decouple the recipient from the
server with both following a completely different architecture
in doing so.

2.1 Queue based Messaging Systems

A queue system is an asynchronous messaging in which a
messaging queue is used for communication. By
asynchronous we mean, a process need not wait until the
message is delivered instead continue with its execution,
meaning the need for blocking the sender to wait for a
response can be avoided. In a queue system a special
messaging queue is established. A message queue is a linked
list of messages stored in a kernel. Thus, using a common
system messaging queue facilitates the exchange of
information between multiple processes because all of them
have access to the messaging queue. Figure 1 depicts this
scenario. The transmitting process places a message on a
queue (through some (OS) message-passing module) that
can be read through another process. Each message is given
a unique identification to help processes pick the correct
messages.

Queues have the following advantages: firstly, they decouple
both the producer and consumer using the help of unique
named queues. Additionally, queues make use of ordered
delivery, which ensures messages are managed in the same
order that they were sent. Finally, a queue also provides
Quality of Service (QoS), such as timely delivery, non-
repeated delivery. Use of message queues however does not
scale well for a large number of recipients. Hence, the
problem that arises with conventional message queues is that
when the number of consumers is large, it makes the entire
system effectively slower.

Fig -1: Senders communicating receiver using message
queue

Queues have become increasingly popular with cloud
applications because they support elastically scalable servers:
clients can add messages to a queue, and servers can take
messages from the queue and operate upon them. So any
server can be filled to full, pulling work when it can support
it. If the queue is long, then more servers can be started to do
the job.

2.2 Publisher Subscriber Model

The solution to the above scenario is a Publisher subscriber
messaging model. Pub-Sub model is one more method of
decoupling sender and receivers. The Pub-Sub model differs
from a queue model in the following manner a) it defines
topic names that are used by receivers to receive all
messages of the topic b) enables/allows topic hierarchies, so
that the subscription to a root gives aggregates of all its
children. Publisher refers to a sender, who sends the
message. Subscriber refers to a recipient, receiving that
message. So, a message to be sent is published in a topic by
the sender [4]. A topic can be any category of messages. All
receivers that are subscribed to a topic receive all the
messages published in the topic. The publisher therefore
does not need to keep a track of the subscribers that need to
subscribe to the message. The publisher only needs to send
the message to the topic. Subscriber needs to subscribe to
the topic [5]. Figure 2 represents a publisher subscriber
model using a topic.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3892

Fig -2: All Sender communicating to receivers through a
topic

Publisher/Subscriber Messaging Model offers various
benefits such as improving the scalability and reliability.
Messaging systems generally focus their attention on
transmitting messages, obscuring the functionality and
behaviors intended for the client and server. As Nelson
commented in [6], from a linguistic design point of view, the
message-passing approach can have some drawbacks.
Messages implement a basic regulation that is somewhat
different from procedure-oriented mechanisms

3. RPC SYSTEMS

A remote procedure call is an interprocess communication
technique, also known as the subroutine call or a function call
that is mainly used in client-server-based applications. RPC
(Remote Procedure Call) implementations encapsulates all
the communications that is hides all the complexity behind
and only shows what is necessary making it easier to
understand the communicating programs. This hiding of
complexities is popular, supporting the original intent of
Birrell and Nelson whose "primary purpose of our RPC
project was to make distributed computing easy"[7]. Remote
Procedure Call (RPC) is an effective technique for creating
client-server based, distributed applications. The requesting
program is considered to be the client and the one that
provides the service is called the server.

It is based on expanding the traditional local calling protocol
so that there is no need to allow the so-called method within
the same address space as the calling protocol. The two
processes can be in the same system, or on different systems.
This request could be a call to a remote server, or a task.
Upon receiving the message, the server sends back the
appropriate response to the client RPC is a synchronous
operation (Figure 3 depicts this scenario) requiring the client
to be suspended until the server responds meaning, the client
is interrupted when the call is being handled by the server
and operation is only restored when the session is completed.
Using a RPC one process can request for a service from
another process that may be present in a) different computer
b) different virtual address space c) or over the network.

Fig -3: An RPC call representing the blocked state of client.

A few advantages of RPC include the internal mechanism and
message passing are hidden from the user, effort required to
rewrite the code is minimum in RPC, RPC’s have support for
both threads oriented and process-oriented models and can
either be used in distributed systems as well as in local
systems. There are downsides to the RPC’s as stated in [6]
like

1. Increase in costs due to RPC’s.
2. RPC’s haven’t been standardized different

companies may implement in different ways
causing them to be incompatible or cause
interoperability issues.

3. RPC’s systems are tightly coupled. This may lead to
issues in another if one of the codebases is changed.

4. Since RPC’s hide network communications and are
tightly coupled. Developers may ignore or forget the
issues that may arise due to network failures.

5. RPC obscures the intrinsic vulnerability in networks
that can be detected, exploited or hindered by
several parties.

These problems can be avoided, through diligent design and
planning, and using RPC extensions (e.g. using asynchronous
calls), but RPCs tend to hide these issues rather than reveal
them and promote good practice. These problems have not
been solved in successors of RPC, such as CORBA either.

4. WEB SERVICE API’s

The web was built with a client-server system for exchange
of human-oriented hypertext documents [2]. When the web
was first launched it was mostly constrained to following
links and reading documents [10]. Later when web started to
evolve, from providing HTML the ability to both request and
send data through HTML forms to today where exchange of
data happens without the need to submit forms all
asynchronously. Subsequently W3C developed XML and
started to gain attention for the usefulness of using it for
distributed systems.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3893

Two new innovations were launched in 1999: XML-RPC [8]
and SOAP 0.9 (which was eventually standardized as SOAP
1.2 in [9]), leading to a push movement to standardize under
the name of Web Services. The movement was led mostly by
a large players like IBM, Microsoft, Sun and Oracle. They all
wanted to develop an interoperable standard that would be
able to connect large systems. A key feature of the Web
Services was the description. Each service provided a
description through a Web Service Description Language
(WSDL). WSDL made mapping of services with their existing
objects on server and WSDL’s with object on client very
simple. But due to the increasing popularity of Web Services,
each company decided to create supremacy that would lead
to political disputes among sellers. In the end, this has led to
the development of many alternate norms. This resulted in
low interoperability and increased complexity. This section
further describes 3 such web services SOAP, REST and
RESTful API’s that are widely being used nowadays in the
industry.

4.1. SIMPLE OBJECT ACCESS PROTOCOL (SOAP)

SOAP or Simple Object Access Protocol is a web
communication interface that has a standard defined, is
simpler and hence providing an effective way of web
communication. SOAP has more standards like security and
how messages are sent. It was designed for Microsoft back in
1998. Today it is mostly used for web services to transfer
data from client to server and vice versa over HTTP/HTTPS.
Unlike the REST template, SOAP only supports XML data
format and strictly adheres to predetermined specifications
such as messaging structure, a set of encoding rules, and a
convention for providing the requests and responses.

SOAP follows standards, has good security features and has
huge extensible capability [6]. SOAP is also language and
platform independent due to its built-in functionality that
allows creating web-based services. Some of the features and
advantages of SOAP include,

1. SOAP works with XML only: SOAP has been designed
to work only with XML and can only handle data that
is available in XML format. XML is a verbose
language that structures data in both human and
machine-readable format. This kind of
standardization allows developers to be sure of what
kind of data they will be processing and hence
making it easier to write code without thinking of
contradictions.

2. SOAP apparent from the data standard also has
another kind of standard. It defines the message
structure that must be followed. This message
structure makes interoperability easier.

3. Another important feature is that SOAP is extensible
with WS standard protocols. Even though SOAP
defines the message structure, it doesn’t define the
content of structure making it customizable as per
needs of different users.

4. SOAP is ACID compliant. This reduces anomalies and
protects integrity of database by providing how
exactly it must interact with the database.

4.2. RESPRESENTATIONAL STATE TRANSFER
(REST) AND RESTFUL

REST stands for Representational State Transfer. It is another
architectural style/standard like SOAP that defines how two
systems can communicate over the network through
HTTP/HTTPS. Sharing data between systems has been the
fundamental reason why network was developed. REST is
data-driven meaning it suggests that all data be converted to
an object and then the state of the object be sent as a
response. REST does not restrict client-server
communication protocol, but it mostly used with HTTP due to
its popularity. REST was introduced and defined by Roy
Fielding in 2000. It is much simpler compared to other API’s
like SOAP [11]. REST exploited the existing technology and
protocols of web to define and recommend a standard that
can be used for communication.

The recommendation made by the REST architecture include

1. The communication must happen between a client
and server and hence separating the data from the
user-interface.

2. It must be stateless meaning the request sent by
client must contain all the information necessary to
respond and must not depend on the server for any
information.

3. The server must define whether a response is
cacheable or not and such cached responses must be
reusable for further request if necessary.

4. The requesting client must be aware of who it is
communicating with, whether it is the server itself,
or a proxy, or an intermediate server.

In a REST architecture, information is referred to as the
resource, the response payload provided by the server can be
anything that is data/resource [12], be it in the form of HTML,
an image file, audio file. Data responses are usually JSON-
encoded, but they can use XML, CSV, short strings, or some
other format depending on needs.

A few advantages of REST include, REST's design architecture
helps exploit the reduced bandwidth usage to make an
application more internet-friendly and hence it often referred
to as the “language of the internet” and is completely works
on resources. Due to this REST has quickly become popular
over the internet and has become the most preferred model
for building API’s

4.2.1. RESTFUL API

A RESTful API is one such API that is based on the REST
architectural recommendations. It follows the guidelines
suggested in REST. Since RESTful is based on REST, it is more
flexible and fast compared to others. A RESTful API works in
the following way, it first builds a set of tiny modules by
breaking down a transaction. Each element addresses a
specific aspect of the operation that underlies it. This
modularity allows developers a lot of versatility, but

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3894

developers can find it difficult to build their REST API from
scratch.

An example of using RESTful API is with HTTP. The simple
HTTP methodologies specified by the RFC 2616 protocol are
used, that is to say GET is used to retrieve a resource, PUT is
used to alter the status of an existing resource, POST
produces a resource, and DELETE removes the object. The
methodologies are used to transfer object and resources from
client to the server and get a response. REST along with HTTP
has become hugely popular with them being used in cloud
applications etc.

5. Comparison of XML-RPC, SOAP and REST/RESTful

Even though RPC hides complexity and supports the Json but
has a very narrow scope. Introduced in the early 2000’s. RPC
uses HTTP as the transport and XML for encoding. XML-RPC
is structured to be as basic as possible and simple, but allows
for the transfer, encoding and return of complex data
structures. An XML-RPC requires that the order be relevant
than the parameters. There are downsides to RPC that
include, being simpler compared to the other two API’s, XML-
RPC is less powerful when it comes to capabilities and hence
less widely adapted. The architecture of RPC isn’t well
defined either, this results in less interoperability problems
as two different systems may be completely different. RPC’s
are also tightly coupled hence may cause issues if one of the
codebase changes.

Table -1: Comparison of REST and SOAP

Comparison
Parameters

REST SOAP

What is it? Representational

state transfer

Simple Object

Access Protocol

Design A standardized

protocol with

pre-defined

rules

An architecture

with loose

recommendations

Message format Only supports

XML

Supports lot of

formats like plain

text, JSON, XML

Approach Function driven Data Driven

Caching No caching of

API calls

API calls can be

cached

Statefulness Stateless/Statefu

l

Stateless only

Performance Needs more

computing

power and

bandwidth

Comparatively

lesser bandwidth

Advantage Security,

standardized,

extensible

Scalable, flexible,

friendly

Disadvantage More complex,

less flexible, poor

performance

Less secure

SOAP on the other hand is its own protocol and is not an
architectural style. It is a bit more complex compared to the
other two as it has more standards defined than others like
how messages are framed and sent. This may be an added
overhead but can be useful to organizations that may need
more features like security, transactions and may also need to
be ACID compliant. SOAP also has a logic to retry if the
message failures to deliver and, hence providing reliability. It
is also platform and language independent and works well
with distributed enterprise environments. Automation can
also be used when necessary in SOAP with certain language
products. SOAP is mostly used situations that need high
security like bank transactions and highly secure
information’s like codes etc. are transferred.

REST is more of an architectural style that is stateless and
more flexible. It follows a data-driven philosophy that access
resource for a data. REST supports various data formats other
than just XML like JSON, Plain text which makes it more
browser compatible. Even though REST is less secure
compared to SOAP, but it can make use of transport level
security SSL using HTTPS. REST also consumes less
bandwidth in this era where limitations of bandwidth is a
well-known problem. REST is also coupled to a lesser degree
and hence has fewer errors that may arise due to changes on
any side.

6. CONCLUSION

 This paper presents a general study and comparison on
different web API services used by various software
applications. Based on the comparisons done on RPC, SOAP,
REST it can be concluded that each software can deliver an
effective data exchange interface depending specifically on
the use cases. API’s have become an integral part of the
current and web and are widely being used to exchange data
and perform operations and may evolve as different
technologies are invented.

REFERENCES

[1] Wayne W Eckerson, “Three tier client/server

architectures: Achieving scalability, performance, and
efficiency in client/server applications,” Open
Information Systems, 3(20):46–50, 1995.

[2] Tim J Berners-Lee, “The world-wide web”. Computer
Networks and ISDN Systems, 25(4):454–459, 1992.

[3] D. Serain, "Client/server: Why? What? How?,"
International Seminar on Client/Server Computing.
Seminar Proceedings (Digest No. 1995/184), La Hulpe,
Belgium, 1995, pp. 1/1-111 vol.1.

[4] A. Bhawiyuga, D. P. Kartikasari and E. S. Pramukantoro,
"A publish subscribe based middleware for enabling real
time web access on constrained device," 2017 9th
International Conference on Information Technology
and Electrical Engineering (ICITEE), Phuket, 2017, pp. 1-
5

[5] Xiwei Feng, Chuanying Jia and Jiaxuan Yang, "Semantic
web-based publish-subscribe system," 2008 IEEE
International Conference on Service Operations and
Logistics, and Informatics, Beijing, 2008, pp. 1093-1096.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3895

[6] Bruce Jay Nelson, “Remote Procedure Call”, PhD thesis,
Carnegie-Mellon University, May 1981. Published as
CMU Technical Report CMU-CS-81-119, XEROX PARC
Technical Report CSL-81-9.

[7] Andrew D. Birrell and Bruce Jay Nelson. Implementing
remote procedure calls. ACM Transactions on Computer
Systems, 2(1):39–59, February 1984.

[8] Dave Winer, “XML-RPC Specification. Technical report”,
June 1999. Available at http://www.xmlrpc.com/spec

[9] SOAP Version 1.2 Part 1: “Messaging Framework.
Recommendation”, W3C, June 2003.Available at
http://www.w3.org/TR/2003/REC-soap12-part1-
20030624/

[10] Maria Maleshkova, Carlos Pedrinaci, and John
Domingue, “Investigating Web APIs on the World Wide
Web”, In Proceedings of the 8th IEEE European
Conference on Web Services (ECOWS 2010), 2010.
Available at http://oro.open.ac.uk/24320/

[11] Fatna Belqasmi, Jagdeep Singh, Suhib Bani Melhem,
Roch H. Glitho, “SOAP-Based Web Services vs. RESTful
Web Services for Multimedia Conferencing Applications:
A Case Study”, 2012 IEEE Internet Computing 16(4):54-
63 · July 2012.

[12] F. Haupt, F. Leymann, A . Scherer, a n d K. Vukojevic
Haupt, “A Framework for the Structural Analysis of
REST APIs,” in Soft-ware Architecture (ICSA), 2017
IEEE International Conference on, 2017, pp. 55–58.

