Optical Character Recognition - An English Assistant with Digitization, Summarization and Read Aloud Functions

Dhiraj Amin¹, Sitadevi Muthkhod², Mebin Philip², Meenu Madhu³, Vivek Menon⁴

¹Professor, Dept. of Computer Engineering, MES. Pillai College, Maharashtra, India
²³⁴⁵Student, Dept. of Computer Engineering, MES. Pillai College, Maharashtra, India

Abstract - OCREADS (Real-time Optical Character Recognition - an English Assistant with Digitization, Summarization and Read Aloud Functions) is basically an implementation of Intelligent Character Recognition in the field of images, an application that will enable you to convert images of typed or printed characters into digital text. OCR (Optical Character Recognition) is used for preparing a manuscript for submission, digitizing journals and notes to make them easy to search and use or converting old documents to electronic format. This is very helpful for the blind and illiterate people for whom this software can read out loud the text that is detected using the Text-to-Speech feature. Additionally, if the content is too long and the user wishes to have a short summary of the text, the Text Summarization feature comes in handy. For instance, traffic symbols, public hoardings, or instructions on a railway station indicator board can be read out to the user. It can be used for academic purposes for converting printed notes into searchable documents. Government and medical institutions can use this to get data from forms so that it can be converted into searchable digital documents. Thus OCR can be a solution to a wide range of applications.

Key Words: OCREADS, Printed OCR, Text-to-Speech, Summarization, English Character Recognition

1. INTRODUCTION

People with visual impairments face various difficulties while accessing printed text using existing technology that includes problems with alignment, focus, accuracy, mobility and efficiency. We present a software that assists the visually impaired which can read the paper-printed text. The proposed project uses the methodology of a camera-based assistive device that can be used by people to read text documents. The framework is on implementing an image capturing technique in a camera or web-cam enabled system. The design is obtained from studies conducted on visually impaired people, and it is small-scale and mobile, which enables a more manageable operation with little setup. In this project, we have proposed a text readout system for the visually challenged. The proposed fully integrated system has a camera as an input device and speaker as an output device.

2. LITERATURE SURVEY

2.1 Webcam-based Optical Character Recognition

Webcam based Optical Character Recognition is a system used to recognize the character or alphabets in the given text by comparing two images of a certain alphabet. The objective of the OCR system is to develop a program for the Optical Character Recognition (OCR) system by using the Template Matching algorithm. This system has its own scopes which use Template Matching as the algorithm that can be applied to recognize the characters, both in lowercase as well as uppercase, and the digits used with courier new font type, using bitmap image format with 240 x 240 image size and recognizing the alphabets by comparing between images that have been stored. The purpose of this system prototype is to solve the problems of blind people who are not able to read, in recognizing the character which is before that it is difficult to recognize the character without using any techniques and Template Matching is one of the solutions to overcome the problem.

2.2 OCR System for English Language

Optical character recognition from scanned images is a challenging task. But as for record-keeping, we need all the data in digital format to perform manipulative operations such as searching, modifying, adding or deleting some records etc. The main issue in case of character recognition is the different styles and fonts in which the text is present. The authors Honey Mehta, Sanjay Singla, Aarti Mahajan [2] have proposed a new approach by using the concept of Artificial Neural Network and Nearest Neighbour approach for character recognition from scanned images. Three layers are used for the classification purpose. First is the input layer that consists of the input given by the segmented characters. The hidden layer consists of neurons trained by the network and the output layer consists of output neurons to generate Unicode of the input characters.

2.3 Extractive Text Summarization

The authors N. S. Shirwandkar and Samidha Kulkarni [3] develop an approach for Extractive text summarization for single-document summarization. They use a combination...
of Restricted Boltzmann Machine and Fuzzy Logic to rank important sentences from the text without losing the meaning and keeping the summary lossless. The text documents used for summarization are in English. Various sentence and word level features are used to generate meaningful sentences. For every document two summaries are generated using Restricted Boltzmann Machine and Fuzzy logic. Both summaries are then combined and processed using a set of operations to get the final summary of the document.

2.4 Python Based Portable Virtual Text Reader

The author Hasan U. Zaman, Saif Mahmood, Sadat Hossain and Iftekharul Islam Shovon [3] implemented a product based on a Raspberry Pi module that also has a camera connected to it which is used to take pictures. The whole bodywork is also integrated with Optical Character Recognition (OCR), Text-To-Speech (TTS) and a speaker. A Graphical User Interface (GUI) helps the users to take pictures in a couple of clicks. A button is integrated to feed the image to the system which helps initiate the program and carry out all the functions. Once the image is successfully captured, the system carries out some basic image processing like binarization and de-noising. The processed image is then supplied to the Neural Network which understands the characters and gTTS is used to convert the text to audio format and read out using software called eSpeak.

<table>
<thead>
<tr>
<th>Paper</th>
<th>Description</th>
</tr>
</thead>
</table>
| "Webcam-based Optical Character Recognition using MATLAB" - Dhiraj Kumar Jasrotia, Aarti Malik | **Advantages:**
1. A text readout system for the visually challenged with a camera that scans the given document converts it to digital text and reads out the text. It works on raspberry pi.
2. 90% success rate achieved.

Disadvantages:
1. Does not perform text summarization. |
| "Optical Character Recognition (OCR) System for Roman Script & English Language using Artificial Neural Network (ANN) Classifier" - Honey Mehta, Sanjay Singla, Aarti Mahajan | **Advantages:**
1. The non-linear nature of ANN helps to deal with the complex nature of text recognition from scanned images.
2. 98.89% accurate recognition rate is obtained for three different font styles.

Disadvantages:
1. Consumes time since many processes are applied and ANN uses many hidden layers.
2. Accuracy specific only to limited font styles |

3. PROPOSED MODEL

3.1 Model architecture

In order to achieve better domain results, in addition to the existing technique, the proposed model uses Convolutional Neural Network which seeks to inherit the advantages and eliminate the disadvantages.

![Fig -1: Proposed system](image-url)
3.2 Algorithm

3.2.1. Image Processing

a. Binarization

Image binarization is the process of taking a grayscale image and converting it to black-and-white, essentially reducing the information contained within the image from 256 shades of grey to 2: black and white.

b. Skew Correction

Skew detection and correction is one of the first operations to be applied to scanned documents when converting data to a digital format. Its aim is to align an image before processing because text segmentation and recognition methods require properly aligned next lines.

3.2.2 Segmentation

Projection Profiles

Line segmentation consists of slicing a page of text or a zone of interest into its different lines. The main objective of Line level segmentation is to determine the coordinates of lines in an image, which can divide the image into lines. The technique used is Horizontal Projection.

Word segmentation is performed to determine where we have to segment the image to separate out words. This is done using the same logic as for lines but the only difference being Vertical Projection.
4. PERFORMANCE EVALUATION

4.1 Dataset

The model was trained on a combination of datasets gathered from UCI Machine learning repository and auto generated images using python code. It consists of over 60000 images of dimension 32x32. These were split into training validation and testing data in the ratio 6:1:1.

4.2 Performance

![Chart -1: Loss and accuracy curves](image)

The accuracy of training data as well as the validation set has converged and stabilised into a plateau structure. Though there was a difference between the losses during the initial epochs, they reduced in the subsequent epochs and their values were pretty much the same. This stability was also maintained for further epochs.

The accuracy of the character recognition model was 72.48 per cent when the convolutional layer was not added. Adding dense hidden layers led to a spike in the accuracy due to overfitting. This was reduced by introducing a Dropout layer which is used to force the network to drop some features and find other paths. A heavy dropout can cause validation accuracy to be higher than the training accuracy. A regularisation layer was also added to avoid overfitting that had reached 98.02 per cent. After adjusting several parameters such as batch_size, number of epochs, number of filters in the Dense layer, Dropout parameter etc we trained the model towards a decent accuracy of 92.27 per cent and an f1 score of 92.3 per cent. Precision and Recall were each found to be 92 per cent. However, there were four characters that could not be classified properly. We plotted the confusion matrix to explore further.

4.3 Evaluation

It was found from the confusion matrix [9] that classes 0 and 50 i.e digit 0 and the capital letter 'O' were significantly misclassified as the other. Similarly, classes 21 and 44 i.e lowercase letter 'l' and capital letter 'I' were significantly misclassified too. Of all the characters of the Latin Script the most ambiguous ones are zero and 'O'; 'l', ‘I’ and ‘I'; and sometimes ‘g’ and ‘9’ in some font types. However, these misclassifications can be rectified while extracting the text from a word or a sentence with reference to the context by using a language model such as NLTK (python package) or a dictionary.

The summarization module performs well. It calculates the cosine distance between sentences and ranks them accordingly. Hence the generated summary is reproducible. Google's Text-To-Speech API is a very efficient reader for the English language. It can also translate the text to a few prominent international languages quite efficiently. However, the language translation feature has not been employed in the current implementation of the project.

5. CONCLUSION

The computer vision and digital image processing are fast-growing fields that are essential in many aspects of other areas like multimedia, artificial intelligence, robotics and much more. Image analysis involves the study of segmentation, feature extraction, and classification techniques. Humans interact quite naturally with each other over writing and speech, similarly, human-computer interaction would make things exciting and easier to the user. From the study, it is found that using CNN can significantly improve the efficiency of the model as opposed to using in-built modules in Python such as the widely used KNN algorithm or using the Tesseract OCR tool. The performance measures are described in the previous section. The different standard datasets or variable inputs defined may be used in the implementation for building OCR Systems. We have generated our own database using python for this project. The evaluation metrics to gauge the performance of our model are identified and presented. Using a larger database and language models for post-processing can increase the efficiency of the model.

ACKNOWLEDGEMENT

We would like to take this opportunity to thank our senior friends Rohit Shamasani and Roshni Ram from IIIT Vadodara for helping us throughout the project. We would also like to thank our Class Coordinator Prof. Rupali Nikhare, our Project Coordinator Prof. K. S. Charumathi, and our HOD Dr Sharvari Govilkar for guiding us towards the successful completion of project work within the given time frame. We would like to express our special thanks of gratitude to our principal Dr Sandeep Joshi who gave us an opportunity to work on this project which helped us learn new concepts and enhance our skills. We extend our sincere appreciation to all our Professors from Pillai College of Engineering, Navi Mumbai for their valuable insight and tips during the designing of the project.
REFERENCES

[8] https://towardsdatascience.com