AUTOMATED MICROANEURYSMS DETECTION IN FUNDUS IMAGES USING IMAGE SEGMENTATION

K.Harish¹, P.Surendra², P.Srinivas³, B.Kiran⁴, A.Vyasa bharadwaja⁵

¹²³UG Scholar, Dept. of Electronics & Communication Engg., Godavari Institute of Engineering & Technology, Rajahmundry, A.P, India
⁴⁵Assistant Professor, Dept. of Electronics & Communication Engg., Godavari Institute of Engineering & Technology, Rajahmundry, A.P, India

Abstract - Diabetic retinopathy is one amongst the complicated diseases which occurs in diabetic patients when the affects damage the retina. The eyes vision can cause be lost just in case currently treatment. Microaneurysms are the earliest detectable abnormalities of diabetic retinopathy, therefore the automated detection of the lesions is crucial and useful task. This paper proposed an easy method to detect microaneurysms supported its characteristics in fundus images using some techniques in image segmentation.

Key Words: Haemorrhage; Red Lesions; Morphological operations; Micro-aneurysms; Diabetic retinopathy.

1. INTRODUCTION:

Diabetes is one among the well-known diseases within the world. When it affects on the attention, we called Diabetic Retinopathy (DR). The affected eyes vision can cause blindness just in case currently treatment. Microaneurysms (MAs) are the primary sign of DR, that the early detection and timely treatment of the lesions can save the patients’ visions. Therefore, timely examination at least once a year should be in dire straits all people with diabetes.

Generally, diabetic retinopathy is assessed into two main stages, namely non-proliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR). NPDR is further classified to mild, moderate or severe stages[5]. Signs of diabetic retinopathy are red lesions like microaneurysms (MA), intraretinal hemorrhages and bright lesions like exudates, plant fibre spots and blood vessels. Red lesions are the primary clinically observable lesions indicating diabetic retinopathy.

[4]. Microaneurysms are small saccular pouches that are caused by local distension of capillary walls and seems to be small red dots on the surface of the retina. this could also ends up in big blood clots called Hemorrhages [5]. Intra-retinal lipid exudates (hard exudates) are triggered by the breakdown of the blood-retinal barrier, which turns to fluid rich in lipids and proteins to depart the parenchyma causing retinal edema and exudation [6].

Most of techniques used for MAs detection are color detection or defining other components, but within the real diagnosis, the colours and components in retinal images also MAs are different per personal heredity. during this paper, HSV color space is employed with the eccentricity technique to seek out out the abnormality of MAs.

Figure 2.1: Microaneurysms in Retinal Image
2. OBJECTIVE:
Diabetes is one among the well-known diseases within the world. When it affects on eye, we called Diabetic Retinopathy (DR). The affected eyes vision can lead to blindness just in case currently treatment. Microaneurysms (MIs) are the primary sign of DR, therefore the early detection and timely treatment of the lesions can save the patients’ visions. Therefore, timely examination at least once each year should be done all people with diabetes.

3. EXISTING WORK:
According to [1], the report from Novo Nordisk Pharma (Thailand) Ltd, there are about 382 million people worldwide have some forms of diabetes. Among all of them, the estimated 3.2 million Thai adults have diabetes; 6.4 percent of the adult population. This number will increase to 4.3 million by 2035. the overall amount around 6 million people are suffering by diabetes in Thailand supported the survey in [2], and 30 percent of them are plagued by DR. With this amount, the quantity of eyes must be examined are a minimum of about 12 million for every year. However, the numbers of ophthalmologists are limited in Thailand. There are approximately 1000 people within the whole country, and most of them live in Bangkok[3].this suggests that it's quite difficult to seek out the ophthalmologists within the provinces, especially within the country. Therefore, the automated system for primary screening of DR is so useful during this task to assist the ophthalmologists.

Morphological operation to get rid of the blood vessels. In the correct threshold value was selected first, then the optic disk area and blood vessels were eliminated by applying morphological operation. Finally, the MAs candidates were classified by support vector machine algorithm. The above proposed methods seem complicated and take time to proceed. So, this project develops an easy method to detect Microaneurysms supported its characteristics with four processing steps. First, preprocessing step is applied to cut back noise and improve the contrast of the image then canny edge detection is employed to define the lesions containing within the retinal image. Since these lesions contain also bright lesions, maximum entropy thresholding method is suitable to define these bright lesions for subtracting from the result. After that, the areas of MIs are selected supported the eccentricity and area methods.

4. LITERATURE SURVEY:

<table>
<thead>
<tr>
<th>S. NO</th>
<th>Paper/title journal</th>
<th>Authors name</th>
<th>Modality</th>
<th>Data bases</th>
<th>Methodology</th>
<th>Software Used</th>
<th>Key Finding</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thailand Diabetes Registry Project: Prevalence, characteristics and treatment of patients with diabetic nephropathy</td>
<td>T.Chettha kul,c.Deerock anawon,s.Suwan w alaikor,n.Kosach u nhanun,c. Ngarmu kos, p.Rawdaree</td>
<td>To evaluate adquacy ofglycemic and bloodvess el control</td>
<td>Drions db,HRf glaucoma cotton wool spot images[5] ,Microaneurysm[10].</td>
<td>Diabeticnephropat hy</td>
<td>Matlab software</td>
<td>Diabetes registry,n ephropat h y, revalan ce</td>
<td>Since the enhancement result of the proposed method is very close to the expected</td>
</tr>
<tr>
<td>2</td>
<td>Clinical Guidelines for Type 2 Diabetes</td>
<td>Hutchin son a, mcintos peters j, home p, feder g, baker r,forresterj, alexand rweltringha m-cox a.greenwood</td>
<td>Fundus images, retinal image, messid or, colour image.</td>
<td>Diared b2, messido r.</td>
<td>Multi-orienta tion SumofMatched Filter(MSMF), Gaussi anMatch</td>
<td>Matlab software</td>
<td>Image processin g medical image analysis, retina</td>
<td>redlesionssv m ,classifier which classifie s sharp.</td>
</tr>
</tbody>
</table>
5. FEATURES OF DIABETES:
Microaneurysms are the starting clinically visible changes of diabetic retinopathy. They're localised capillary dilatations which are usually saccular (round). They appear as small red dots which are often in clusters but may occur in isolation.
Fig: 5.7: Haemorrhages within the nerve fiber

Fig: 5.8: Greyish-white patches of discoloration

Fig: 5.9: Fluorescein angiography

Fig: 5.10: Mild venous dilatation

Fig: 5.11: Multiple dot and blot haemorrhages

Fig: 5.12: Venous changes

Fig: 5.13: A single cotton wood spot

Fig: 5.14: Proliferative retinopathy
6. DETECTING DIABETIC RETINOPATHY:
Microaneurysms are, because the name suggests, small saccular outpouchings that involve capillaries of the many vascular districts like heart, kidney and eye. Ophthalmologists know that although they occur in several pathologic conditions like hypertension, venous occlusion and hemorrhologic diseases, including methemoglobinemia and anemia, they're the hallmark of diabetic retinopathy.

6.1: Mechanism of formation:
The mechanism for the formation of microaneurysms isn't completely understood. It's known that diabetes is characterized by vessel basement membrane thickening and selective degeneration with pericyte loss, which ends up in local structural weakness within the vessel wall with subsequent dilatation and, as secondary effect, focal vascular endothelial cell proliferation.

6.2: Diabetic retinopathy development:
Based on several studies that investigated the pathogenesis of the initial phases of diabetic retinopathy, loss of pericytes is that the most significant factor, together with change of hydrostatic pressure and impaired tissue oxygenation. A molecular view of this process reveals that chronic hyperglycemia results in glycation of retinal capillary basement membrane and formation of toxic products like sorbitol or advanced glycation end products. This ends up in decreased adhesion and proliferation inhibition of pericyte.

6.3: Microaneurysm size, type:
Microaneurysm size ranges from 14 mm to 136 mm. Ultrastructural examination enabled Stitt and colleagues to differentiate four arbitrary stages of microaneurysm formation. Type 1 is the only type with intact endothelium and is characterized by a rather thickened basement membrane and leucocytes and monocytes that occlude the lumien.
7. IMPLEMENTATION OF THE PROJECT:

7.1: Algorithm:

Input: RGB fundus image.

Output: Binary image with microaneurysms and 4 feature values representing area occupied by microaneurysms in 4 quadrants.

Step 1: Pre processing:

i. Normalize the image with relation to size.

ii. Extract green channel of the RGB image.

iii. Apply adaptive histogram equalization thrice, to enhance the image.

Step 2: Segmentation:

i. Apply canny edge detector to find the edges of blood vessels and pathologies.

ii. The candidate microaneurysms are selected by filling them supported on their shape and size.

Step 3: Morphological operation:

morphological opening with large ball shaped structuring element of size 11 is used to eliminate blood vessels.

Step 4: Boundary of optic disc:

It is marked using an active contour method and is eliminated by converting the pixels inside the boundary to background.

Step 5: Area Calculation:

The resultant image is split into four quadrants and also the area occupied by microaneurysms in each quadrant is calculated.

8. RESULTS:

The simulation results are verified from the selected input images using the MATLAB platform. The following figures shows the MATLAB figures generated during the simulation of the program for the Microaneurysms detection in the Fundus images.

![Figure 8.1: input image](image1)

![Figure 8.2: Red Plane Extraction of the Input image](image2)
9. CONCLUSION:

This project proposed a straightforward method for automated Micro Aneurysms detection in fundus images, it's an element of Diabetic Retinopathy lesions detection system which is incredibly important to assist the ophthalmologists for primary DR screening. We've got tested the Matlab segmentation code on normal and abnormal retinal images.

To analyse the segmentation process we used different sub figures like input images, haemorrhages, cotton wool spots and healthy images. In this paper, the performance evaluation has been done over all the images by the verification of an ophthalmologist. The ophthalmologist verifies the detection results for all test image sets supported the values of sensitivity and specificity.
10. REFERENCES:

[1] National Epidemiology Board of Thailand “The diabetes epidemic and its impact on Thailand”

