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Abstract - Recommendation systems are an integral part of 
any e-commerce business. Several prominent e-commerce 
websites such as Amazon, Netflix etc use recommendation 
systems in order to enhance the quality of user experience by 
providing intuitive and personalized recommendations. 
Ranking of items is an important step in providing relevant 
recommendations.  Primarily Machine-Learned Ranking 
(MLR) methods have been used in a multitude of information 
retrieval problems such as online-advertising, document 
retrieval etc. The ranking function is generally learned using 
either a Pointwise, Pairwise or a Listwise approach. In this 
work we analyze the efficacy of several prominent machine 
learning methods that are used to rank items.  We apply these 
methods on the popular open-source MovieLens 100K Dataset 
and summarize the results. 
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1. INTRODUCTION  
 
Recommendation systems serve as the forefront of many e-
commerce businesses. Their ability to learn user preferences 
by monitoring user-activity and studying user-behaviour has 
been exploited in marketing products to interested users as 
well as targeted cross-selling. 
 

1.1 Ranking in Recommendation Systems 
 
Content based filtering [1] and Collaborative filtering [2] are 
the 2 most commonly used approaches in the design of a 
recommendation system. A Content Based filtering approach 
recommends products to users which are similar to the items 
that they have indicated their interest in, or have bought in 
the past. The similarity between products can be measured 
using various metrics such as the Euclidean distance, cosine 
similarity matrix, Pearson’s coefficient of correlation etc. 
However a major limitation of this approach of 
recommending is that the recommendations are limited to 
those products which are similar to the products the user has 
already interacted with, in the past. This implies that these 
methods rely heavily on analyzing user-activity for providing 
recommendations. As a result these methods are unable to 
recommend new products to users which is a very important 
aspect of cross-selling. In order to recommend new products 
to users it is important to understand user-behaviour in 

addition user-activity. Collaborative filtering seeks to solve 
this problem by either building a user-profile or an item-
profile. In general the collaborative filtering approach starts 
off with a common user-item space and matrix factorization 
is applied to generate either a user-user matrix or an item-
item matrix. For instance the user based collaborative 
filtering algorithm attempts to find similarity between users 
by looking at the pattern of their interactions across items. It 
then uses this information to recommend new items not 
bought by the user but bought by similar users. The 
Collaborative filtering approach suffers from the cold start 
problem, wherein the addition of a new user or new item to 
the dataset can cause the system to provide irrelevant 
recommendations. This is because the system does not have 
any history of the user and hence does not know the user 
behaviour, or because the new item does not have any user 
interaction on it which is very important in item based 
collaborative filtering. 
 
In addition to providing product recommendations to users a 
good Recommender System also needs to rank the products 
based on some scoring criterion. The similarity (or 
correlation) score calculated either during content based 
filtering or collaborative filtering may not always be the best 
indicator of the fact that the user will buy the item. 
 
For instance, an e-commerce website selling movies, needs to 
provide a ranked list of movie recommendations to its 
customers such that the movie having the highest buy 
probability (probability that the movie shown will be bought 
by customer) is displayed on the top.  While providing the 
movie recommendations, the recommender system may 
either use a collaborative or a content based filtering 
approach to analyze user preferences. However when 
displaying the recommendations to the users, the system 
needs to rank these recommendations. Different features may 
be relevant for the task of recommending and for that of 
ranking. For example when considering similarity between 
new movies and the movies previously bought by the 
customer, features such as genre, production studio, ratings 
etc may be more relevant. Therefore movies having high 
degree of similarity on these features are most likely to 
receive a higher correlation score and therefore would be the 
top recommendations provided by a content based or 
collaborative filtering strategy.  But when we consider the 
buy probability of these movies, other features such as price, 
release date etc may be more important indicators. Intuitively 
it can be easily understood that if a movie is new or if the 
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movie price is low there is a higher probability that a 
customer would buy the movie Therefore although the 
movies recommended by the system had a high correlation 
with the user-preferences they may not eventually be bought 
by the customer.  Thus a naive approach of ranking movie 
recommendations based on their similarity score as 
determined by the similarity metric may not necessarily be 
the most optimal. Therefore there is a need to develop a 
ranking function which can learn to rank recommendations.  
 

1.2 Literature Review 
 

A study-of the state of the art reveals the existence of 
several approaches to learning the ranking function. In the 
Pointwise (or item-wise) learning [3] approach a single 
record is looked at a time in the loss function. In the Pairwise 
learning [4] approach a pair of records are looked at a time 
in the loss function and the goal is to come up with an 
optimal ordering for the pairs that minimizes the number of 
inversions in ranking. Listwise learning[5] approaches look 
at the entire list of records at a time and try to come up with 
an optimal ordering for it. As such several ‘Learning to Rank’ 
(LTR) neural network models have been developed to 
exploit one of the above 3 methods for learning.  For instance 
RankNet [6] uses neural nets to minimize the number of 
inversions (incorrect orderings) in ranking. Specifically 
RankNet attempts to optimize its cost function using 
Stocashtic Gradient Descent (SGD). LamdaRank[7] optimizes 
RankNet training using only the gradients associated with 
the cost instead of the costs and performs better than 
RankNet in terms of both speed and accuracy. 
LamdaMART[8-9] uses gradient boosted trees for optimizing 
the cost function derived from LamdaRank and is found to 
perform better than both LamdaRank and RankNet. Several 
other specialized models also exist but a detailed study of 
each of them is out of scope of this work.   

 

2. LEARNING TO RANK RECOMMENDATIONS 
In this section we analyze popular machine learning 

methods that have traditionally been used for classification 
but can also serve as powerful alternatives to the specialized 
neural network based LTR methods. In this work we 
specifically focus on the Pointwise learning approach for 
learning the ranking function.   
 

2.1 Dataset 
The MovieLens 100K Dataset[10] is a popular open-source 
dataset that has been widely used as a benchmark dataset in 
the development of several recommender systems. It 
contains 100,000 ratings (ranging from 1 to 5) given by 1000 
users on 1700 movies.  Apart from this the Dataset also 
provides information about movie-specific features such as 
genre(18 classes), release date etc. This Dataset however 
misses some features of user-interaction necessary for 
learning a ranking function. Therefore we simulate these 
synthetic features for the purpose of our experiment and use 
these features to generate synthetic user-interaction data. 
These simulations are designed to replicate a real world 

scenario wherein users interact with the product 
recommendations provided by an e-commerce website (in 
our case movies). 
 

2.2 Data Preparation 
Apart from the movie-specific features provided in the 
dataset for each movie such as genre, release date, url etc we 
append 2 additional features to each movie namely 
‘average_rating’ and ‘num_of_ratings’. These are obtained by 
grouping the ratings data by ‘movie_id’ and taking the mean 
and count of the ratings for each group respectively. The cost 
of a movie is an important factor that customers consider 
before buying a movie. The dataset however does not 
provide a ‘movie_price’ feature. Therefore we simulate a 
synthetic feature ‘movie_price’ for each movie. Intuitively 
one can say that the price of a movie will be relative to the 
age of a movie and its ‘average_rating’. Therefore we 
calculate the relative ‘movie_price’ of a movie by calculating 
the ‘normalized_rating’ (relative rating) and 
‘normalized_age’(relative age) as shown in equation 1 
 

 

 

 

 

 
 
 

Eq -1: Formula to calculate ‘movie_price’ 
 
Before simulating the synthetic user-interaction data we 
simulate another synthetic feature ‘buy_prob’ i.e the 
probability that a movie recommended will be bought by the 
user. Intuitively we can consider the ‘buy_prob’ of a movie to 
be linearly dependent on the ‘movie_price’.  We calculate the 
‘buy_prob’ of a movie as shown in the equation 2 
 

 

Eq -2: Formula to calculate ‘buy_prob’ 
 
Thus according to the equation the movie with the least 
price has the highest probability of being bought by the 
customer.  The histogram distribution of all the features is 
illustrated in Fig 1 
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Fig 1: Histogram distribution of features 
 
We use the ‘buy_prob’ feature to simulate the synthetic user-
interaction data. Specifically for the Pointwise learning 
approach we are interested in user-interaction data of the 
type as elucidated in Table 1. 
 

CustomerID MovieID Buy outcome 

customer_1 movie_1 0 0 

customer_1 movie_2 0 0 

customer_1 movie_3 1 1 

customer_2 movie_2 0 0 

customer_2 movie_3 1 1 

 
Table 1 User-Interaction Data (Pointwise) 

 
This data can be interpreted as customer_1 was 
recommended the movies, movie_1, movie_2 and movie_3 
and decided to buy movie_3. Similarly customer_2 was 
recommended the movies movie_2 & movie_3 and decided to 
buy movie_3. As this is a Pointwise learning approach the 
outcome is a replica of whether the customer decided to buy 
a recommended movie or not. 
 
In order to simulate these user interactions we use the 
Pointwise event generator pseudo code as shown in Fig 2. 
We simulate these events for 1000 users considering that 
each user interacted with 20 random movies(or 
recommended via collaborative/content based filtering) on 
an average. 
 
 
 
 

 
Fig -2: Pseudo code for Pointwise user event generation 

 
The user interaction event distribution as a function of 
‘movie_price’ that is obtained as a result of using the above 
pseudo code for simulation is illustrated in Fig 3. From the 
figure it is clear that the number of positive events (buy) are 
more when the price is less and the number of negative 
events (not buy) are more when the price is higher.  
 

 
 

Fig -3: User-interaction event distribution simulation 
 

The getRecommendedMovies function(Fig 2) returns a list of 
recommended movies for a customer using either one of 
collaborative or content based filtering strategies. Due to the 
availability of abundance of literature covering these 
approaches on MovieLens 100K we choose to omit the 
implementation of this function in our work. 
 

2.3 Ranking using Machine Learning 
The prepared data is split into training and testing splits. 
80% of the data is used for training and 20% of the data is 
used for testing. We feed the input features and the outcome 
variable into various machine learning models and evaluate 
them via the precision, recall and accuracy metric. We obtain 
the optimal hyper-parameters for each model using the grid 
search technique [11]. In order to evaluate the ranking 
performed by the machine learning models we use the 
popular Normalized Discounted Cumulative Gain (NDCG) 
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score [12] metric by taking the ‘buy_prob’ as the ground 
truth measure of relevance. 
 

2.4 Results and Analysis 
Illustrated in Table 2 is the performance of various machine 
learning models using the pointwise approach for learning 
the ranking function. The enhanced Gradient Boosting 
methods namely Adaptive Boosting (AdaBoost)[13], Light 
Gradient Boosting Machine (Light GBM)[14] and eXtreme 
Gradient Boosting (XGBoost) [15] perform considerably 

better than other methods in ranking as indicated by their 
high NDCG scores. This can be attributed to their ability to 
perform optimization in the function space rather than the 
parameter space. That is the boosted trees are obtained by 
optimizing a custom objective function (such as NDCG) 
rather than a loss function which offers less control. It is also 
observed that logistic regression is a better candidate 
algorithm for ranking than an ensemble learning method 
such as random forest or a naive neural network such as the 
Multi-layer Perceptron. 

Model Name Train 
Precision 

Train Recall Train 
Accuracy 

Test 
Precision 

Test Recall Test 
Accuracy 

NDCG 
score 

Naïve Bayes 0.84845 0.17635 0.52615 0.82758 0.18570 0.53103 0.93080 

Support Vector 
Classifier 

0.65799 0.75702 0.64733 0.65365 0.76194 0.64714 0.96391 

Decision Tree 
Classifier 

0.73643 0.70193 0.69563 0.65995 0.62630 0.61711 0.97300 

Random Forest 
Classifier 

0.71728 0.73275 0.69187 0.64734 0.67091 0.61811 0.97323 

Multi-layer 
Perceptron 
Classifier 

0.67849 0.71672 0.65484 0.66866 0.71096 0.64739 0.98642 

Logistic 
Regression 

0.66597 0.726656 0.646584 0.66625 0.73782 0.65265 0.98777 

Gradient 
Boosting 
Classifier 

0.67542 0.72880 0.65565 0.66223 0.72553 0.64564 0.98795 

AdaBoost 
Classifier 

0.65828 0.75714 0.64764 0.64916 0.75967 0.64214 0.98797 

Light GBM 
Classifier 

0.67050 0.74302 0.65528 0.66056 0.73873 0.64764 0.98801 

XGBoost 
Classifier 

0.70985 0.74415 0.68968 0.65704 0.69412 0.63263 0.98803 

 
Table 2 Performance of models using Pointwise learning Approach 

 

3. CONCLUSIONS 
 
A good recommender system must be capable of not only 
providing recommendations but also ranking them. The 
relevant features to be considered while recommending and 
ranking may be different. In this work, the user-interactions 
on Movie-Lens 100K Dataset were simulated in order to 
replicate the real-world interactions of users with an e-
commerce website. A pointwise approach was used for 
learning the ranking function. The performance of several 
prominent machine learning models was documented. It was 
found that Gradient Boosting methods perform considerably 
better than the other methods in the learning to rank task.  
The Light GBM classifier model with an NDCG score of 
0.98801 and XGBoost Classifier model with an NDCG score of 
0.98803 were found to outperform all other models in the 
ranking task. In the future we seek to extend this work by 
adopting Pairwise and Listwise approaches to learning 
which are generally considered to be more optimal. 
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