

Survey on Features and Techniques used for Bone Fracture Detection and Classification

B Raghavendra Setty¹, Kamalapurada Vishwanath², Puneeth G J³, Dr. B. Sreepathi⁴

^{1,2}P.G. Scholar, Department of Computer Science & Engineering, RYMEC, Ballari-583104, India ³Asst. Professor, Department of Computer Science & Engineering, RYMEC, Ballari-583104, India ⁴Professor, Department of Computer Science & Engineering, RYMEC, Ballari-583104, India ***

Abstract: Bone fracture is a common problem due to accident, osteoporosis and pressure. Moreover, bone is rigid portion and supports the whole body. Therefore, the bone fracture is taken as an important problem in recent times. Bone fracture detection using computer vision is getting more and more important in Computer Aided Diagnosis system because it can help to reduce workload of the doctor or orthopedist.

Machine learning and image classifier can be used to efficiently detect bone fracture and can classify them. This paper is a study on the various techniques we can employ for the detection and classification of bone fractures. This paper likewise briefs about the openly accessible bone fracture dataset for testing and investigation.

Keywords: Convolutional Neural Networks, Bone Fracture, Canny Edge, Sobel, Machine Learning

I. INTRODUCTION

Bone fracture is common problem even in most developed countries and the number of bone fractures is increasing rapidly. Bone fracture can occur due to a simple accident or pressure. So, quick and accurate diagnosis can be crucial to the success of any prescribed treatment.

In practice, doctors and radiologists relay on X-ray images to determine whether a fracture has occurred or not and the precise nature of the fracture. Manual inspection of X-rays for fracture detection is a tedious and time consuming process. A tired radiologist may miss a fracture image among healthy ones. CAD system can help to screen X-ray images for suspicious cases and alarm the doctors. Depending on the experts alone for such a critical matter has caused intolerable errors and hence, the idea of automatic diagnosis system has always been an appealing one.

Image processing and machine learning based studies are being used in several areas such as face recognition, fingerprint recognition, tumor detection and segmentation. Different Machine Learning algorithms are used for the classification tasks in these areas. The commonly used ML algorithms are LDA, SVM, Artificial Neural Networks (ANN), Naive Bayes Classifier, K-Nearest Neighbor (KNN), and Deep learning algorithms. The selection of input feature is very important in any classification task, using ML algorithms.

A. BONE FRACTURE TYPES

The different types of fracture include:

- 1. Traverse fracture: The break is in a straight line across the bone.
- 2. Linear fracture: The break that runs parallel to the bone's main axis.
- 3. Oblique fracture: The break that runs diagonal across the bone.
- 4. Spiral fracture: It occurs when a long bone is twisted (rotated) with force. It is also known as torsion fracture.
- 5. Greenstick fracture: An incomplete fracture in which the bone is partially broken and partially bent.
- 6. Comminuted fracture: In this type the bone is shattered into small pieces and this kind will take more time to heal.

Fig. 1. Types of Bone Fracture

B. Canny Edge Detection

Canny edge operator is considered as superior edge detection operator among the available operators based on the experimental results. It detects faint edges efficiently even in noisy image and show road feature. This method is capable to mark all existing edges in the image and immune to noisy environment. Canny edge detection is a multistage algorithm to detect a wide range of edges in a given image.

1. The original image is smoothed implementing with a Gaussian filter. The result is less blurred image. It obtains the real edges of the image.

2. The edge is detected using Sobel operators for finding horizontal (Gx) and vertical (Gy). Sobel kernel in x and y directions are given below

Fig. 2 Sobel Operator (a) Gx (b) Gy

3. After that, the gradient magnitude and direction of the image can be calculated using the following equations

$$G = \sqrt{G^2 x + G^2 y}$$

$$\theta = \arctan\left(\frac{Gy}{Gx}\right)$$

4. Then, the algorithm tracks along these regions and suppresses any pixel that is not at maximum called non-maximum suppression. It is carried out to preserves all local maxima in the gradient image, deleting everything else will result in thin edges.

5. The last step is binarizing the image pixels by applying two threshold (lower and higher) values. The output of non-maxima suppression may contain the local maxima created by noise. Therefore, double thresholding is used for avoiding this problem. When the edge pixels greater than the higher threshold that are marked as 1 and if the edge pixel less than the lower threshold that are marked as 0. If the edge pixel falls in between the two thresholds and is adjacent with higher pixel, then it is marked as 1, otherwise it is marked as 0. Figure 4 show the result images of different edge detectors. [6]

C. Convolutional Neural Networks (CNN)

Convolutional Neural Networks are a type of Artificial Neural Networks that are known to be immensely potent in the field of identification as well as image classification. We take an example to explain the same

Fig. 3. CNN Architecture

Four main operations in the Convolutional Neural Networks are shown as follows:

- (i) Convolution: The main use of the Convolution operation in case of a CNN is to identify appropriate features from the image which acts as an input to the first layer.
- (ii) Non-linearity: ReLU or Rectified Linear Unit is a non-linear operation. ReLU acts on an elementary level. In other words, it is an operation which is applied per pixel and supersedes all the non-positive values of each pixel in the feature map by zero.
- (iii) Pooling or sub-sampling : Spatial Pooling which is also called subsampling or downsampling helps in reducing the dimensions of each feature map but even while doing so, retains the most consequential information of the map. After pooling is done, eventually our 3D feature map is converted to one dimensional feature vector.
- (iv) Classification (Fully Connected layer): The output from the convolution and pooling operations provides prominent features which are extracted from the image. These features are then utilized by Fully Connected layer for relegating the input image into different classes predicated on the training dataset. [15]

II. RELATED WORK

Myint, et al. [1] purpose of this work is to detect fracture or non-fracture and classify type of fracture of the lower leg bone (tibia) in x-ray image. The tibia bone fracture detection system is developed with three main steps. They are preprocessing, feature extraction and classification to classify types of fracture and locate fracture locations. In preprocessing, Unshrap Masking (USM), which is the sharpening technique, is applied to enhance the image and highlight the edges in the image. The sharpened image is then processed by Harris corner detection algorithm to extract corner feature points for feature extraction. And then, two classification approaches are chosen to detect fracture or non-fracture and classify fracture types. For fracture or not classification, simple Decision Tree (DT) is employed and K-Nearest Neighbour (KNN) is used for classifying fracture types. In this work, Normal, Transverse, Oblique and Comminute are defined as the four fracture types. Moreover, fracture locations are pointed out by the produced Harris corner points. Finally, the outputs of the system are evaluated by two performance assessment methods. The first one is performance evaluation for fracture or non-fracture (normal) conditions

using four possible outcomes such as TP, TN, FP and FN. The second one is to analysis for accuracy of each fracture type within error conditions using the Kappa assessment method.

Tripathi, et al. [2] a method is proposed through this paper to visualize and classify deformities for locating fractures in the femur through image processing techniques. The input image is preprocessed to highlight the domain of interest. In the process, the foreground which is the major domain of interest is figured out by suppressing the background details. The mathematical morphological techniques are used for these operations. With the help of basic morphological operations, the foreground is highlighted and edge detection is used to highlight the objects in the foreground. The processed image is classified using the support vector machine (SVM) to distinguish fractured and unfractured sides of the bone.

Johari, et al. [3] purpose of this paper is to find out the accuracy of an X-ray bone fracture detection using Canny Edge Detection method. Edge detection through Canny's algorithm is proven to be an ideal edge identification approach in determining the end of line with impulsive threshold and less error rate.

Dhiraj B, et al. [4] presents a system, which is aimed to provide the orthopedic surgeons with the powerful tool. The traditional machine used to scan the X-ray and MRI reports gives the hazy picture about the bone part, which sometimes leads the surgeons to make wrong assumptions, and may henceforth lead them towards wrong diagnosis of the bone fractures. The software system developed here is equipping the orthopedic surgeons with the tool which is far much better in analyzing the X-rays and MRI scans than the traditional machines and the methods that the doctors have been using till now and can help them detect even multiple fractures with ease. This system works on the methods and algorithms developed to perform various operations on images, but these operations make life easy for the surgeons. The Image Processing is one field which is finding a lot of applications in today's world in the fields like seismology, remote sensing and medical and one example in the field of medical is this software system.

Myint, et al. [5] proposed system has three steps, namely, preprocessing, segmentation, and fracture detection. In feature extraction step, this uses Hough transform technique for line detection in the image. Feature extraction is the main task of the system. The results from various experiments show that the proposed system is very accurate and efficient.

Kurniawan, et al. [6] purpose of this system is to find out the accuration of an X-Ray Bone Fracture Detection using Canny Edge Detection Method. Fractured bone is a bone condition that suffered a breakdown of bone integrity. A disconnected connection between two cartilages also categorized as bone fracture. Normally, bones have elasticity and a great number of strength. This system is built using OpenCV library combined with Canny Edge Detection method to detect the bone fracture. Canny Edge Detection method is an optimal edge detection algorithm on determining the end of a line with changeable threshold and less error rate. The simulation results have shown how canny edge detection can help determine location of fractures in x-ray images.

Anu, T. C, et al. [7] purpose is to develop an image processing based efficient system for a quick and accurate classification of bone fractures based on the information gained from the x-ray / CT images. Images of the fractured bone are obtained from hospital and processing techniques like pre-processing, segmentation, edge detection and feature extraction methods are adopted. The processed images will be further classified into fractured and non fractured bone and compare the accuracy of different methods. Results obtained demonstrate the performance of the bone fracture detection system with some limitations and good accuracy of 85%.

Wu, Zhengyang, et al. [8] this study introduces the convolutional neural network (CNN) algorithm, one of the deep learning algorithms, to distinguish the degree of fracture development while constructing a new model which can automatically identify cracks and determine the category of fractured reservoirs in the meantime. Firstly, the logging curves with strong sensitivity to fractures are selected as the input data of convolution neural network, and the crack category is quantified as the output label of the network. A CNN model which is suitable for the classification of cracks is designed, whose parameters is continuously optimized through a small batch gradient descent method in the training stage. Then the trained convolutional neural network is applied to process the logging data of an oil field. The comparison of the result of crack classification by convolutional neural networks can extract the most effective features and greatly improve the accuracy of the fracture classification in dealing with complex nonlinear problems such as the classification of fractured reservoirs.

Cao, Yu, et al [9] present a generalized bone fracture detection method that is applicable to multiple bone fracture types and multiple bone structures throughout the body. The method uses features extracted from candidate patches in X-ray images in a novel discriminative learning framework called the Stacked Random Forests Feature Fusion. This is a multilayer learning

formulation in which the class probability labels, produced by random forests learners at a lower level, are used to derive the refined class distribution labels at the next level. The candidate patches themselves are selected using an efficient subwindow search algorithm. The outcome of the method is a number of fracture bounding-boxes ranked from the most likely to the least likely to contain a fracture. We evaluate the proposed method on a set of 145 X-rays images. When the top ranking seven fracture bounding-boxes are considered, we are able to capture 81.2% of the fracture findings reported by a radiologist. The proposed method outperforms other fracture detection frameworks that use local features, and single layer random forests and support vector machine classification.

Umadevi, N, et al [10] purpose is to automatically detect fractures in long bones and in particular, leg bone (often referred as Tibia), from plain diagnostic X-rays using a multiple classification system. Two types of features (texture and shape) with three types of classifiers (Back Propagation Neural Network, K-Nearest Neighbour, Support Vector Machine) are used during the design of multiple classifiers. A total of 12 ensemble models are proposed. Experiments proved that ensemble models significantly improve the quality of fracture identification.

Raghavendra, U., et al. [11] propose an automated thoracolumbar fracture detection technique using convolutional neural networks (CNNs) without segmenting the vertebra. The proposed method can efficiently classify the normal and fractured subjects with an accuracy of 99.10%, sensitivity of 100% and specificity of 97.61% using our private dataset (Total image 1120). This novel CAD system can assist the orthopedists in their routine screening.

Al-Ayyoub, et al [12] considers the problem of determining the fracture type. To the best of our knowledge, ours is the first work to address this problem. After preprocessing the images, we extract distinguishing features and use them with different classification algorithms to detect the existence of a fracture along with its type. The experiments we conduct show that the proposed system is very accurate and efficient.

Dai, Xiangfeng, et al. [13] propose an on-device Inference App, where the classification model is pre-trained and stored on a mobile device, where it is used to perform classification of new data, which, consequently, does not need to be shared externally. We demonstrate the basic principles of our approach including its evaluation using a case study, which focuses on skin cancer - one of the most common human malignancies.

Patnaik, et al. [14] provides an approach to use various computer vision based techniques (deep learning) to automatically predict the various kinds of skin diseases. The system uses three publicly available image recognition architectures namely InceptionV3, InceptionResnetV2, MobileNet with modifications for skin disease application and successfully predicts the skin disease based on maximum voting from the three networks. These models are pretrained to recognize images upto 1000 classes like panda, parrot etc. The architectures are published by image recognition giants for public usage for various applications. The system consists of three phases- The feature extraction phase, the training phase and the testing / validation phase. The system makes use of deep learning technology to train itself with the various skin images. The main objective of this system is to achieve maximum accuracy of skin disease prediction.

Rathod, et al. [15] propose an automated image based system for recognition of skin diseases using machine learning classification. This system will utilize computational technique to analyze, process, and relegate the image data predicated on various features of the images. Skin images are filtered to remove unwanted noise and also process it for enhancement of the image. Feature extraction using complex techniques such as Convolutional Neural Network, classify the image based on the algorithm of softmax classifier and obtain the diagnosis report as an output. This system will give more accuracy and will generate results faster than the traditional method, making this application an efficient and dependable system for dermatological disease detection. Furthermore, this can also be used as a reliable real time teaching tool for medical students in the dermatology stream.

Gavai, et al. [16] Classification of objects into their specific classes is always been significant tasks of machine learning. Existing recent Google's inception-v3 model comparatively takes more time and space for classification with high accuracy. In this paper, we have shown experimental performance of MobileNets model on TensorFlow platform to retrain the flower category datasets, which can greatly minimize the time and space for flower classification compromising the accuracy slightly.

Cheng Qian, et al. [17] presents an Android application to automatically identify plant species using a single leaf image as input. At the pre-processing phase, we proposed an improved segmentation method to eliminate the noise caused by capturing on non-uniform background so we can obtain the binary image which only contains the leaf shape. Then, several morphological features and Hu moment invariants descriptors were extracted as inputs of a joint classifier which combines the back propagation neural network (BPNN) with a weighted k-nearest-neighbor (KNN) to distinguish 220 species of plants.

The outputs of the joint classifier are the top ten species that best match the query leaf image. At the end, we implemented these algorithms on Android OS and the application we developed has been downloaded about a million times.

Vinayshekhar Bannihatti Kumar, et al [18] provide an approach to detect various kinds of skin diseases. We use a dual stage approach which effectively combines Computer Vision and Machine Learning on clinically evaluated histopathological attributes to accurately identify the disease. In the first stage, the image of the skin disease is subject to various kinds of preprocessing techniques followed by feature extraction. The second stage involves the use of Machine learning algorithms to identify diseases based on the histopathological attributes observed on analysing of the skin. Upon training and testing for the six diseases, the system produced an accuracy of up to 95 percent.

Dhiraj B. Bhakare, et al. [19] presents a system, which is aimed to provide the orthopedic surgeons with the powerful tool. The traditional machine used to scan the X-ray and MRI reports gives the hazy picture about the bone part, which sometimes leads the surgeons to make wrong assumptions, and may henceforth lead them towards wrong diagnosis of the bone fractures. The software system developed here is equipping the orthopedic surgeons with the tool which is far much better in analyzing the X-rays and MRI scans than the traditional machines and the methods that the doctors have been using till now and can help them detect even multiple fractures with ease. This system works on the methods and algorithms developed to perform various operations on images, but these operations make life easy for the surgeons. The Image Processing is one field which is finding a lot of applications in today's world in the fields like seismology, remote sensing and medical and one example in the field of medical is this software system.

Lum, Vineta Lai Fun, et al. [20] presents a study of probabilistic combination methods applied to the detection of bone fractures in X-ray images. Test results show that the effectiveness of a method in improving both accuracy and sensitivity depends on the nature of the method as well as the proportion of positive samples.

Sl No	Title	Author & Year	Method/Techniques used	Evaluation Measure	Comments/Observations
1	Analysis on Leg Bone Fracture Detection and Classification Using X-ray Images	Myint, et al. [1] 2018	Harris corner detection, Decision Tree (DT) , Kth Nearest Neighbor (KNN)	Accuracy – 85%	Harris corner detection is used to find the broken points. Decision Tree is used to classify image as fractured or non-fractured. KNN is used to classify the fracture type as Transverse, Oblique, and Comminuted fracture types.
2	Automatic detection of fracture in femur bones using image processing	Tripathi, Ankur Mani, et al [2] 2017	Canny edge detection, Sobel operator, Support Vector Machine (SVM).	Accuracy 84.7%	Canny edge detects the bone edge accurately and Sobel operator detects the clear fractured edge. SVM is used to classify image as fractured or non-fractured.
3	Bone Fracture Detection Using Edge Detection Technique	Johari, et al. [3] 2018	Canny Edge Detection, Sobel operator	Accuracy – 87.3%	Sobel operator with the parameter sigma 4.75 is used to enhance the efficiency of the system and it diagnoses the hairline fracture more effectively.
4	Novel Approach for Bone Fracture Detection Using Image Processing	Dhiraj B, et al. [4] 2018	Support Vector Machine (SVM), K-Nearest Neighbor (KNN)	Accuracy – 85%	The different classifiers like SVM (Support Vector Machine), K-Nearest Neighbor (KNN) can be

Table -1:	Different	Bone	fracture	classification	methods.
Tuble I	Different	Done	nucture	clussification	methous.

International Research Journal of Engineering and Technology (IRJET)

Volume: 07 Issue: 05 | May 2020

www.irjet.net

5 Detecting leg bone fracture in x-ray images Myint, et al. [5] 2016 Camy Edge Detection wing OpenCV						
0 fracture in x-ray images 2016 county bage sections be achieved by gaining a better dataset with high resolution images. 6 Bone Practure Detection Using OpenCV Kurniawan, et al. [6] Camy Edge detection 2014 Accuracy— 66.7% Performance accuration of the detection system affected by the quality of the image. The better the image duality, better the results. 7 Detection of Bone Fracture using Methods Anu, T. C, et al. [7] Sobel Edge Detector using GLCM features. Accuracy— 8. Gray Level Co-occurrence Matrix (GLCM) method is used to extract textural features such as entropy, contrast, correlation, homogenety, Results are evaluated hased on CLCM features. - 8 Classification of Reservoir Fracture Development Level optiment Wu, Zhengyang, et al. [8] Convolutional Neural Different al. [8] Accuracy 2015 - The accuracy of convolution neural network. 9 Fracture Detection in X-Ray Images Feature Fusion Cao, Yu, et al [9] Random forests for feature Support Vector Machine (SVM) Accuracy 91.5% - This system can be used for various types of fractures over different natamatical regions. 10 Multiple classification system for fracture detection in human bone x- ray images Umadevi, N, et al [10] 2012 Support Vector Machine (SVM) Nut Resures were extracted from the x-ray images ray images Raghavendra, ucracy and factures and space features were significature system - 11 Automated system for the detection of thoracolu	5	Detecting leg hone	Mvint et al [5]	Canny Edge Detection		used for classification. Much higher accuracy can
images images<	5	fracture in x-ray	2016	Samily hage beteenon		be achieved by gaining a
Image Image <th< td=""><td></td><td>images</td><td></td><td></td><td></td><td>better dataset with high-</td></th<>		images				better dataset with high-
6 Bone Fracture OpenCV Kurniawan, et al. 2014 Canny Edge detection using OpenCV Accuracy— 66.7% Performance accuration of the detection system affected by the quality of the image quality. 7 Detection of Bone Fracture using Image Processing Methods Anu, T. C, et al. [7] Sobel Edge Detector using GLCM features. Accuracy— 85% - Gray Level Co-occurrence usits (GLCM) method is used to extract textural features such as entropy, contrast, correlation, homogeneity, contrast, correlation, homogeneity, escuracy of an (LSM) - Gray Level Co-occurrence usits (GLCM) method is used to extract textural features such as entropy, contrast, correlation, homogeneity, escuracy of an (LSM) -		0				resolution images.
DetectionUsing OpenCV[6] 2014using OpenCV[6-7%accuration of the detection system affected by the quality of the image. The better the image quality, better the image quality. better the results.7Detection of Bore Fracture using MethodsAnu, T. C, et al. [7] 2015Sobel Edge Detector using GLCM features.Accuracy 90.00000000000000000000000000000000000	6	Bone Fracture	Kurniawan, et al.	Canny Edge detection	Accuracy—	Performance and
OpenCV2014and mathematical system affected by the spatial of the image quality, better the image quality, better the image quality, better the image quality, better the using methods7Detection of Bone Fracture using MethodsAnu, T. C, et al. [7] 2015Sobel Edge Detector using GLCM features.Accuracy 8%Gray Level Co-occurrence 8%8Classification of Reservoir Fracture Development Level by Convolution Neural Network Algorithm.Wu, Zhengyang, et al. [8] 2018Convolutional Neural Network (CNN) and BP neural networks.Accuracy- 97.5%The accuracy of convolution neural network is higher than that of BP neural network which is basically consistent with the manual interpretation.9Practure Detection Neural Network Agorithm.Cao, Yu, et al [9] 2018Random forests for feature fusion and Support Vector Machine (SVM) Support Vector Machine (SVM), K-Nearest Neighbor (KNN), K-Nearest Neig		Detection Using	[6]	using OpenCV	66.7%	accuration of the detection
Image Detection of Bone Fracture using Methods Anu, T. C, et al. [7] 2015 Sobel Edge Detector using GLCM features. Accuracy Sole Gary Level Go-occurrence Matrix (GLCM) method is used to extract textural features such as entropy. contrast. 8 Classification of Reservoir Fracture Development Level by Convolution Neural Network Algorithm. Wu, Zhengyang, et al. [8] Convolutional Neural BP neural networks. Accuracy- 97.5% The accuracy of convolution neural network is higher than that of BP neural networks. 9 fracture Development Level by Convolution Neural Network Cao, Yu, et al [9] Random forests for feature fracture Sustent with the manual interpretation. Accuracy - 97.5% This system can be used for various types of fractures over different anatomical regions. 10 Multiple classification system for fracture detection in human bone x- ray images Imadexi, N, et al [10] 2012 Support Vector Machine (SVM). SVM Accuracy Back Propagation Neural Network (GNN) K-Nearest Neighbor (KNN) K-Nearest Neighbor (KNN) K-Nearest Neighbor (KNN) SVM Accuracy B3.97.6 Texture features and shape features significant improvement in terms of accuracy and precision. 11 Automated system for the detection of thoracolumbar fractures using a CNN architecture. Raghavendra, U, et al. [11] 2018 Convolutional Neural Network (CNN) Neural Network (CNN) Accuracy P3.6% A toraccolumbar fracture needs to be trested at the carlies tages. The s		OpenCV	2014			system affected by the
Image Fracture WebdsAnu, T. C, et al. [7] 2015Sobel Edge Detector using GLCM features.Accuracy SSWGray Level Co-occurrence Matrix (GLCM) method is usued to extract textural features such as entropy, contrast, correlation, homogeneity. Results are evaluated based on GLCM features.Gray Level Co-occurrence Matrix (GLCM) method is usued to extract textural features such as entropy, convolution network (CNN) and BP neural networks.Accuracy- 97.5%Gray Level Co-occurrence Matrix (GLCM) method is usued to extract textural features such as entropy, convolution neural network (CNN) and BP neural networks.Accuracy- 97.5%Gray Level op- network (GNN) and BP neural networks.9Fracture Detection in X-Ray Images through Stacked Random Forests Feature FusionGao, Yu, et al [9] 2015Random forests for feature (SVM)Accuracy - 90.46This system can be used factures over different system for in human bone x- ray imagesUmadevi, N, et al [10] 2012Support Vector Machine (SVM), K-Nearest Neighbor (KNN) K-Nearest Neighbor (KNN)SVM Accuracy- 90.46Texture features and shape features.11Automated system for the detection of thracolumbar fractures using a CNN architectureRaghavendra, U, et al. [1] 2018Convolutional Neural Network (ENN)Neural SVM Accuracy- 89.76- Fature features and shape features.11Automated system for the detection of thracolumbar fractures using a CNN architectureRaghavendra, U, et al. [1] 2018Convolutional Neural Network (CNN)Accuracy- sp.676- A thoracolu						quality of the image. The
7Detection of Bone Fracture using MethodsAnu, T. C. et al. [7] 2015Sobel Edge Detector using GLCM features.Concurracy 85%- GR- GR- GR- GR- GR- Concurract Matrix (GLCM) method is used to extract textural features such as entropy, contrast, correlation, homogeneity, Results are evaluated based on GLCM features GR- GR <t< td=""><td></td><td></td><td></td><td></td><td></td><td>better the image quality,</td></t<>						better the image quality,
7 Detection of Bone Fracture using Image Processing Methods Accuracy 2015 Gray Level Co-occurrence B5% - Gray Level Co-occurrence B5% - - Gray Level Co-occurrence B5% - - Gray Level Co-occurrence B5% - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>better the results.</td>						better the results.
Fractureusing Methods2015GLCM features.85%Matrix (GLCM) method is used to extract textural features such as entropy, contrast. Results are evaluated based on GLCM features.8Classification of Reservoir Fracture Development LevelWu, Zhengyang, et al. [8]Convolutional Network (CNN) and BP neural networks.Convolution Neural Network (CNN) and BP neural networks.Accuracy- 97.5%The accuracy of convolution neural network is higher than that of BP neural network.9Fracture Detection in X-Ray Images through Stacked Random Forests Feature FusionCao, Yu, et al [9] 2015Random forests for feature fusion and (SVM)Accuracy - fusion and (SVM)This system can be used for various types of fractures over different anatomical regions.10Multiple classification system for fracture detection in human bone x- ray imagesUmadevi, N, et al [10] 2012Support Vector Machine (SVM), K-Nearest Neighbor (KNN)SVM Accuracy- 90.46Texture features and shape features.11Automated system for the detection of thoracolumbar fracture and shape features.Raghavendra, U, et al. [11] 2018Convolutional Network (CNN)Neural Network (CNN)Accuracy - 97.6%Accuracy - features - a third results showed that the ensemble accuracy and precision.11Automated system for the detection of thoracolumbar fractures and shape factures and shape factures and shape factures and shape features.Convolutional Network (CNN)Neural Network (CNN)Accuracy - 97.6	7	Detection of Bone	Anu, T. C, et al. [7]	Sobel Edge Detector using	Accuracy –	Gray Level Co-occurrence
Image MethodsProcessing Methodsused to extract textural features such as entropy, contrast, correlation, homogeneity. Results are evaluated based on GLM features.8Classification of Reservoir Fracture Development Level by Convolution Neural Network Algorithm.Wu, Zhengyang, et al. [8] 2018Convolutional Neural Network (CNN) and BP neural networks.Accuracy- 97.5%The accuracy of convolution neural network is higher than that of BP neural network, which is basically consistent with the manual interpretation.9Fracture Detection in X-Ray Images Hrough Stacked Random Forests Feature FusionCao, Yu, et al [9] 2015Random forests for feature (SVM)Accuracy - 81.2%This system can be used 81.2%10Multiple classification in system for fracture detection in human bone x- ray imagesUmadevi, N, et al [10] 2012Support Vector Machine SVM, K-Nearest Neighbor (KNN)SVM Accuracy - 91.89Texture features and shape fractures at al shape from the x-ray images10Multiple classification in human bone x- ray imagesUmadevi, N, et al (2012Support Vector Machine SVM, K-Nearest Neighbor (KNN)SVM Accuracy - 91.69Texture features and shape features11Automated system from the detection of throacolumbar fractures using a CNN architectureRaghavendra, U, et al. [11] 2018Convolutional Neural Network (CNN)Neural Neural Neural Neural Network (CNN)Accuracy - 97.6%A thoracolumbar factures and shape features using a conva and precision. </td <td></td> <td>Fracture using</td> <td>2015</td> <td>GLCM features.</td> <td>85%</td> <td>Matrix (GLCM) method is</td>		Fracture using	2015	GLCM features.	85%	Matrix (GLCM) method is
MethodsMethodsImage: Constraint correlation, homogeneity, Results are evaluated based on GLCM features.8Classification of Reservoir Fracture Development Level by ConvolutionWu, Zhengyang, et al. [8]Convolutional Neural Network (CNN) and BP neural networks.Accuracy-The accuracy of convolution neural network is higher than that of BP neural network, Mich is basically consistent with the manual interpretation.9Fracture Detection In X-Ray Images through Stacked Random Forests Feature FusionCao, Yu, et al [9]Random forests for feature fusion and Support Vector Machine (SVM)Accuracy -This system can be used for various types of fractures ever different anatomical regions. SVM and single layer random forests increase the effectiveness. Accuracy could be further improved in numan bone x-ray images10Multiple classification system for fracture detection in human bone x-ray imagesSupport Vector Machine SVM, K-Nearest Neighbor (KNN)SVM Accuracy -Features were extracted from the x-ray images BPNN score that combines BPNN score different results showed that the ensemble model that combines BPNN score and shape features significant improvement in terms of thoracolumbar fracture detection of thoracolumbar fracture.Convolutional Neural Neural Neural Neural Neural Neural Accuracy -11Automated system for the detection of thoracolumbar fracture.Raghavendra, U, et al. [11] 2018Convolutional Neural Neural Neuror (CNN)Neural Accuracy -11Automated system for thar the detection of thoracolumbar fracture.Raghavendra, U, et al. [11] 2018Convolutional Neural Neural Neural Neuror (SNN)Accuracy -11Automated system for thread stages.Raghavendra, U, et al. [11] 2018Convolut		Image Processing				used to extract textural
8Classification of Reservoir Fracture Development 2018Wu, Zhengyang, et al. [8] 2018Convolutional Network (CNN) and BP neural networks.Accuracy- 97.5%The accuracy of convolution neural network ishigher than that of BP neural network.9Fracture Detection Neural Network Algorithm.Cao, Yu, et al. [9] 2015Random forests for feature fusion and Support Vector Machine (SVM)Accuracy- 91.2%The accuracy of convolution neural network ishigher than that of BP neural network.9Fracture Detection in X-Ray Images through Stacked Random Forests Feature FusionCao, Yu, et al [9] 2015Random forests for feature fusion and Support Vector Machine (SVM)Accuracy - 81.2%This system can be used for various types of fractures over different nanatomical regions. SVM and single layer he effectiveness. Accuracy could be further improved by incorporating more types of local features.10Multiple classification system for fracture detection in human bone x- ray imagesUmadevi, N, et al ful 2012Support Vector Machine (SVM), K-Nearest Neighbor (KNN)SVM Accuracy- 90.46Texture features and shape features were extracted from the x-ray images11Automated system fractures using a CN rachine K-nachine K-nachine in human bone x- ray imagesRaghavendra, U-, et al. [11] 2018Convolutional Neural Network (CNN)Neural Neural Neural Neural Neural Neural Network (CNN)Accuracy- 97.6%A thoracolumbar fracture nachine nodel that combines accuracy- spilleau nodel that combines <td></td> <td>Methods</td> <td></td> <td></td> <td></td> <td>features such as entropy,</td>		Methods				features such as entropy,
8Classification Resurvoir Fracture Development Level 						contrast, correlation,
8 Classification of Reservoir Fracture Development Wu, Zhengyang, et al. [8] Convolutional Neural Network (CNN) and BP neural networks. Accuracy- 97.5% The accuracy of convolution network is higher than that of BP neural network, which is basically consistent with the manual interpretation. 9 Fracture Detection in X-Ray Images through Stacked Random Forests Feature Fusion Cao, Yu, et al [9] 2015 Random forests for feature fusion and Support Vector Machine (SVM) Accuracy 81.2% - This system can be used for various types of fractures over different anatomical regions. 10 Multiple classification system for fracture detection in human bone x- ray images Umadevi, N, et al [10] 2012 Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), K-Nearest Neighbor (KNN) SVM Accuracy- 90.46 KNN Texture features and shape form the x-ray images forming a total of 12 features. 11 Automated system for the detection in human bone x- ray images Raghavendra, U, et al. [11] 2018 Convolutional Network (CNN) Neural Network (CNN) Neural Network (CNN) Proming Proversent in terms of accuracy and precision. 11 Automated system for the detection of thoracolumbar fractures using a CNN architecture Raghavendra, U, et al. [11] 2018 Convolutional Network (CNN) Neural Network (CNN) Accuracy Promo - A thoracolumbar fracture needs to be treated at the earliest stages. The system can be implemented in android device using <td></td> <td></td> <td></td> <td></td> <td></td> <td>Results are evaluated</td>						Results are evaluated
8 Classification of Reservoir Fracture Development Level Wu, Zhengyang, et al. [8] 2018 Convolutional Network (CNN) and BP neural networks. Accuracy 97.5% The accuracy of convolution neural network is higher than that of BP neural network, which is basically consistent with the manual interpretation. 9 Fracture Detection in X-Ray Images through Stacked Random Forests Feature Fusion Cao, Yu, et al [9] 2015 Random forests for feature fusion and Support Vector Machine (SVM) Accuracy atom of the accuracy of accuracy of BP neural network, which is bast than that of BP neural network, which is bastically consistent with the manual interpretation. This system can be used for various types of fractures over different anatomical regions. SVM and single layer random forests increase the effectiveness. Accuracy could be further improved by incorporating more types of local features. 10 Multiple classification system for fracture detection in human bone x- ray images Umadevi, N, et al [10] 2012 Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), K-Nearest Neighbor (KNN) SVM Accuracy- 90.46 KNN Accuracy- 89.76 Texture features and shape features 11 Automated system fractures using a CNN architecture. Raghavendra, UL1] 2018 Convolutional Network (CNN) Neural Network (CNN) Accuracy 97.6% A toracolumbar fracture ousing features						hased on GLCM features
0 Consolution They mengy of al. [8] or al. [8] or al. [1] or al. [1] 2018 Network (CNN) and BP neural networks. P7.5% Inc. Technology of consolution neural network is higher than that of BP neural network is higher than that of BP neural network. 9 Fracture Detection in X-Ray Images through Stacked Random Forests Feature Fusion Cao, Yu, et al [9] 2015 Random forests for feature fusion and Support Vector Machine (SVM) Accuracy and fractures over different anatomical regions. 10 Multiple classification in human bone x- ray images fracture detection in human bone x- ray images Umadevi, N, et al [10] 2012 Support Vector Machine BPNN, K-Nearest Neighbor (KNN) SVM Accuracy or 90.46 KNN made that ensemble model that combines 89.76 11 Automated system for the detection in human bone x- ray images CNN architecture. Raghavendra, U, et al. [11] 2018 Convolutional Neural Neural Network (CNN) Accuracy 97.6% Accuracy or 20.46 KNN made that ensemble mode that combines 89.76 11 Automated system for the detection of thoracolumbar fracture and shape features using a CNN architecture. Convolutional Neural Neural Network (CNN) Accuracy 97.6% Accuracy or 20.46 KNN made that ensemble mode that combines 89.76 11 Automated system for the detection of thoracolumbar fracture and shape features using a CNN architecture. Convolutional Neural Neural Network (CNN) Accuracy 97.6% A thoracolumbar fracture needs thap efeatures significant inprovemen	8	Classification of	Wu 7hengyang et	Convolutional Neural	Accuracy-	The accuracy of
Development Level Level Multiple classification system in human bone x- ray imagesCao, Yu, et al [9] 2015BP neural networks.Point (cm/y atc. production metwork is higher than that of BP neural network, which is basically consistent with the manual interpretation.9Fracture Detection in X-Ray Images through Stacked Random Forests Feature FusionCao, Yu, et al [9] 2015Random forests for feature fusion and Support Vector Machine (SVM)Accuracy support Vector MachineThis system can be used fractures over different anatomical regions. SVM and single layer random forests increase the effectiveness. Accuracy could be further improved by incorporating more types of local features.10Multiple classification system for fracture detection in human bone x- ray imagesUmadevi, N, et al [10] 2012Support Vector Machine (SVM), Back Propagation Neural Newer (SPNN), K-Nearest Neighbor (KNN)SVM Accuracy- 90.46Texture features. Texture features and shape from the x-ray images BPNN + SVM + KNN with both texture and shape features.11Automated system for the detection of thoracolumbar fractures using a CNN architectureRaghavendra, U, et al. [11] 2018Convolutional Network (CNN)Neural Network (CNN)Accuracy product- Hot the anipelication and of 12 features.11Automated system for the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U, et al. [11] 2018Convolutional Network (CNN)Neural Network (CNN)Accuracy product- Hot the anipelication and	0	Reservoir Fracture	al [8]	Network (CNN) and	97.5%	convolution neural
Level Convolution Neural Network Algorithm.Cao, Yu, et al [9] 2015Random forests for feature fusion and Support Vector Machine (SVM)Accuracy and Support Vector Machine (SVM)This system can be used fractures over different anatomical regions. SVM and single layer random forests increase the effectiveness. Accuracy could be further improved by incorporating more types of local features.10Multiple classification system for fracture detection in human bone x- ray imagesUmadevi, N, et al [10] 2012Support Vector Machine (SVM)SVM Accuracy pack Back Propagation Neural Network (BPNN), K-Nearest Neighbor (KNN)SVM Accuracy- 90.46Texture features and shape fractures are in the system from the x-ray images BPNN accuracy- g9.76Texture detures a total of 12 features.11Automated system frocture attents of accuracy suing a CNN architecture attents fractures ausing a CNN architecture attentsRaghavendra, U, et al. [11] 2018Convolutional Network (CNN)Neural Neural Network (CNN)Accuracy profession-11Automated system froctures using a CNN architectureRaghavendra, U, et al. [11] 2018Convolutional Network (CNN)Neural Neural Neural Network (CNN)Accuracy profession-11Automated system froctures using a CNN architectureRaghavendra, U, et al. [11] 2018Convolutional Network (CNN)Neural Neural Neural Network (CNN)Accuracy accuracy and precision.11Automated system froctures using a CNN architectureRaghavendra, U, <b< td=""><td></td><td>Development</td><td>2018</td><td>BP neural networks.</td><td>571070</td><td>network is higher than that</td></b<>		Development	2018	BP neural networks.	571070	network is higher than that
Convolution Neural Algorithm.Cao, Yu, et al [9] 2015Random forests for feature fusion and Support Vector Machine (SVM)Accuracy 81.2%This system can be used for various types of fractures over different anatomical regions. SVM and single layer random forests increase through Stacked Random Forests Feature FusionUmadevi, N, et al [10] 2012Support Vector Machine (SVM)SVM support Vector Machine (SVM)SVM support Vector Machine (SVM)Texture features. support Vector Machine (SVM)10Multiple classification system for fracture detection in human bone x- ray imagesUmadevi, N, et al [10] 2012Support Vector Machine (SVM), Support Vec		Level by				of BP neural network,
Neural Network Algorithm.Cao, Yu, et al [9] in X-Ray Images through Stacked Random Forests Feature FusionCao, Yu, et al [9] in X-Ray Images (SVM)Random forests for feature fusion and Support Vector Machine (SVM)Accuracy and support Vector Machine (SVM)This system can be used for various types of fractures over different anatomical regions. SVM and single layer random forests increase the effectiveness. Accuracy could be further improved by incorporating more types of local features.10Multiple classification system for fracture detection in human bone x- ray imagesUmadevi, N, et al [10] 2012Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), K-Nearest Neighbor (KNN)SVM Accuracy— 90.46 KNN Accuracy— 90.46 KNN Accuracy— 89.76Texture features and shape features forming a total of 12 features.11Automated system for the detection of thraculumbar fractures and a for the detection of thraculumbar fractures and a for the detection of thraculumbar fractures and a hapeRaghavendra, U., et al. [11] 2018Convolutional Network (CNN)Neural Neural Network (CNN)Accuracy Accuracy— 97.6%Accuracy A choracolumbar fracture android device using android device using android device using android device using android device using		Convolution				which is basically
Algorithm.Interpretation.interpretation.9Fracture Detection in X-Ray Images through Stacked Random Forests Feature FusionCao, Yu, et al [9] 2015Random forestor Support Vector Machine (SVM)Accuracy and Support Vector Machine (SVM)-This system can be used for various types of fractures over different anatomical regions.10Multiple classification system for fracture detection in human bone x- ray imagesUmadevi, N, et al [10] 2012Support Vector Machine Back Propagation Neural Network (BPNN), K-Nearest Neighbor (KNN)SVM Accuracy- p1.89Texture features and shape features.11Automated system for the detection of thractures eding a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Network (CNN)Neural Network (CNN)Accuracy Accuracy- p3.66Texture detection im human bone x- ray imagesRaghavendra, U., et al. [11] 2018Convolutional Network (CNN)Neural Network (CNN)Accuracy P1.66Actoracy forming a total of 12 features.11Automated system for the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Network (CNN)Neural Neural Network (CNN)Accuracy P1.66A thoracolumbar fracture needs to be treated at the earlies stages. The system can be implemented in android device using Tonsor/How		Neural Network				consistent with the manual
9Fracture Detection in X-Ray Images through Stacked Random Forests Feature FusionCao, Yu, et al [9] 2015Random forests for feature fusion and Support Vector Machine (SVM)Accuracy and Support Vector Machine (SVM)This system can be used for various types of fractures over different anatomical regions. SVM and single layer random forests increase the effectiveness. Accuracy could be further improved by incorporating more types of local features.10Multiple classification system for fracture detection in human bone x- rayimagesUmadevi, N, et al [10] 2012Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), K-Nearest Neighbor (KNN)SVM Accuracy 91.89Texture features and shape form the x-ray images form the x-ray images of the detection of thoracolumbar fractureRaghavendra, U, et al. [11] 2018Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), K-Nearest Neighbor (KNN) 89.76SVM Accuracy 89.76Texture features and shape forming a total of 12 features.11Automated system for the detection of thoracolumbar fractures and shape for the detection of thoracolumbar fracturesRaghavendra, U, et al. [11] 2018Convolutional New (CNN)Neural show of the stare and shape forming a total of 12 interes.11Automated system for the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U, et al. [11] 2018Convolutional Neural Network (CNN)Securacy show of the stare and shape forming a total of 12 interes.11Automated system for the dete		Algorithm.				interpretation.
In X-Ray Images through Stacked Random Forests Feature Fusion2015fusion and Support Vector Machine (SVM)81.2%for various types of fractures over different anatomical regions. SVM and single layer random forests increase the effectiveness. Accuracy could be further improved by incorporating more types of local features.10Multiple classification system for fracture detection in human bone x- ray imagesUmadevi, N, et al [10] 2012Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), K-Nearest Neighbor (KNN)SVM Accuracy- 90.46 KNN Accuracy- 89.76Texture features and shape forming a total of 12 features.11Automated system for the detection of thoracolumbar fracturer using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Network (CNN)Neural Neural Network (CNN)Accuracy - solutional Neural Network (CNN)Accuracy - solutional Neural Neural Neural Accuracy- 89.76A thoracolumbar fracture actures using a contourbar fracture	9	Fracture Detection	Cao, Yu, et al [9]	Random forests for feature	Accuracy –	This system can be used
through Stacked Random Forests Feature FusionUmadevi, N, et al [10] 2012Support Vector Machine (SVM)Support Vector Machine (SVM)fractures over different anatomical regions. SVM and single layer random forests increase the effectiveness. Accuracy could be further improved by incorporating more types of local features.10Multiple classification system for fracture detection in human bone x- ray imagesUmadevi, N, et al [10] 2012Support Vector Machine (SVM), Network (BPNN), K-Nearest Neighbor (KNN)SVM Accuracy- 90.46 KNN Accuracy- 90.46Texture features and shape features.11Automated system for the detection of thoracolumbar Retures using a CNN architecture.Raghavendra, U, et al. [11] 2018Convolutional Network (CNN)Neural Network (CNN)Accuracy Pi.6%-A thoracolumbar fracture needs to be treated at the earliest stages. The system can be implemented in android device using Teactures.		in X-Ray Images	2015	fusion and	81.2%	for various types of
Random Forests Feature FusionWandevi, N, et al (10) 2012(SVM)(SVM)anatomical regions. SVM and single layer random forests increase the effectiveness. Accuracy could be further improved by incorporating more types of local features.10Multiple classification system for fracture detection in human bone x- ray imagesUmadevi, N, et al [10] 2012Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), K-Nearest Neighbor (KNN)SVM Accuracy 91.89Texture features and shape features and shape form the x-ray images forming a total of 12 features.11Automated system for the detection thoracolumbar fractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Network (CNN)Neural Network (CNN)Accuracy PickerAccuracy etaures.11Automated system for the detection thoracolumbar fractures using a CNN architecture.Raghavendra, U., etal. [11] 2018Convolutional Network (CNN)Neural Network (CNN)Accuracy PickerA thoracolumbar fracture android device using Texerprise		through Stacked		Support Vector Machine		fractures over different
Feature FusionFeature FusionSVM and single layer random forests increase the effectiveness. Accuracy could be further improved by incorporating more types of local features.10Multiple classification system for fracture detection in human bone x- ray imagesUmadevi, N, et al [10] 2012Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), K-Nearest Neighbor (KNN)SVM Accuracy - 90.46 KNNTexture features and shape form the x-ray images forming a total of 12 features.11Automated system for the detection a Concolumbar fractures using a CNN architecture.Raghavendra, U. et al. [11] 2018Convolutional Network (CNN)Neural Neural Network (CNN)Accuracy - 90.46 Neural Accuracy- 97.6%Actoracy - Features Accuracy - Accuracy - Accuracy - A thoracolumbar fracture accuracy and precision.		Random Forests		(SVM)		anatomical regions.
10Multiple classification system for fracture detection in human bone x- ray imagesUmadevi, N, et al (10] 2012Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), K-Nearest Neighbor (KNN)SVM Accuracy BPNN Accuracy- 90.46 KNN Accuracy- 90.46 KNN System for from the x-ray imagesTexture features and shape features.11Automated system for the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Network (CNN)Neural Neural Network (CNN)Accuracy BPNN Accuracy- BO.46 KNN Accuracy- BS.76Features. Experimental results showed that the ensemble model that combines BPNN + SVM + KNN with both texture and shape features11Automated system for the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Neural Network (CNN)Neural Neural Accuracy PT.6%-A thoracolumbar fracture needs to be treated at the earliest stages. The system can be implemented in android device using Temcorflow		Feature Fusion				SVM and single layer
10Multiple classification system for fracture detection in human bone x- ray imagesUmadevi, N, et al [10] 2012Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), K-Nearest Neighbor (KNN)SVM Accuracy Pound Pound Accuracy- 90.46Texture features and shape forming a total of 12 forming a total of 12 model that the ensemble model that combines 89.7611Automated system for the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Network (CNN)Neural Neural Neural Network (CNN)Accuracy Accuracy- 97.6%A thoracolumbar fracture needs to be treated at the earliest stages. The system can be implemented in android device using Tomserfouw						random forests increase
10Multiple classification system for fracture detection in human bone x- ray imagesUmadevi, N, et al [10] 2012Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), K-Nearest Neighbor (KNN)SVM Accuracy 90.46Texture features and shape form the x-ray images form the x-ray images10Multiple classification system for fracture detection in human bone x- ray imagesUmadevi, N, et al [10] 2012Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), K-Nearest Neighbor (KNN)SVM Accuracy- 90.46Texture features were extracted from the x-ray images forming a total of 12 features.11Automated system for the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Network (CNN)Neural Neural Accuracy Neural Neural Accuracy P7.6%A ccuracy A thoracolumbar fractures using a con be implemented in android device using Texture susing a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Neural Network (CNN)Accuracy P7.6%A thoracolumbar fracture susing a can be implemented in android device using Tencorflow						the effectiveness. Accuracy
10Multiple classification system for fracture detection in human bone x- ray imagesUmadevi, N, et al [10] 2012Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), K-Nearest Neighbor (KNN)SVMTexture features and shape features were extracted from the x-ray images10Multiple classification in human bone x- ray imagesUmadevi, N, et al [10] 2012Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), K-Nearest Neighbor (KNN)SVMTexture features and shape form the x-ray images forming a total of 12 features.11Automated system for the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Network (CNN)Neural Neural ProductAccuracy - ProductA thoracolumbar fracture needs to be treated at the earliest stages. The system can be implemented in android device using Tractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Neural Network (CNN)Accuracy - ProductA thoracolumbar fracture needs to be treated at the earliest stages. The system can be implemented in android device using Tensorflow						by incompositing more
10Multiple classification system for fracture detection in human bone x- ray imagesUmadevi, N, et al [10] 2012Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), K-Nearest Neighbor (KNN)SVM Accuracy - 91.89 BPNN Accuracy- 90.46 KNNTexture features and shape features were extracted from the x-ray images forming a total of 12 features.11Automated system for the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U. et al. [11] 2018Convolutional Neural Network (CNN)Neural Propagation Neural Propagation Neur						types of local features
10Matche classification system for fracture detection in human bone x- ray images[10] 2012Style suppletStyle Accuracy 91.89Forther leaders and shape features were extracted form the x-ray images11Automated system for the detection of thoracolumbar fractures using a CNN architecture.[11] 2018Convolutional Network (CNN)Neural Neural Network (CNN)Style Accuracy 90.46Forther leaders and shape features were extracted form the x-ray images forming a total of 12 features.11Automated system for the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Network (CNN)Neural Network (CNN)Accuracy Neural Accuracy Network (CNN)Accuracy PTA thoracolumbar fracture needs to be treated at the earliest stages. The system can be implemented in android device using Tencorflow	10	Multinle	Umadevi N et al	Support Vector Machine	SVM	Texture features and shape
System fracture detection in human bone x- ray imagesfor fracture detection in human bone x- ray imagesfor fracture detection in human bone x- ray imagesfor fracture detection k-Nearest Neighbor (KNN)for k-Nearest Neighbor (KNN)for ming a total of 12 forming a total of 12 features.11Automated system for the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Neural Network (CNN)Neural Neural Neural AccuracyAccuracy - model showed that the ensemble model that combines BPNN + SVM + KNN with both texture and shape features significant improvement in terms of accuracy ad precision.	10	classification	[10] 2012	(SVM)	Accuracy –	features were extracted
fracture detection in human bone x- ray imagesNetwork (BPNN), K-Nearest Neighbor (KNN)BPNN Accuracy- 90.46 KNNforming a total of 12 features.11Automated system for the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Network (CNN)Neural Neural Accuracy- 89.76Accuracy- 90.46 KNN Accuracy- 89.76Forming a total of 12 features.11Automated system for the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Neuval Network (CNN)Neural PT.6%Accuracy - PT.6%A thoracolumbar fracture needs to be treated at the earliest stages. The system can be implemented in android device using Tensorflow		system for	[10] 1011	Back Propagation Neural	91.89	from the x-ray images
in human bone x- ray imagesk-Nearest Neighbor (KNN)Accuracy— 90.46features.90.46K-Nearest Neighbor (KNN)Accuracy— 90.46features.90.46KNNAccuracy— 89.76model that combines BPNN + SVM + KNN with both texture and shape features significant improvement in terms of accuracy and precision.11Automated system for the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Network (CNN)Neural Price of the system of the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Neural Network (CNN)Accuracy Price of the system can be implemented in android device using TensorflowA thoracolumbar fracture susing a CNN architecture.Features is a converted at the earliest stages. The system can be implemented in android device using Tensorflow		fracture detection		Network (BPNN),	BPNN	forming a total of 12
ray imagesray images90.46Experimental results11Automated system for the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Network (CNN)Neural Network (CNN)Accuracy- 89.76Experimental results showed that the ensemble model that combines BPNN + SVM + KNN with both texture and shape features significant improvement in terms of accuracy and precision.11Automated system for the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Network (CNN)Neural P7.6%A ctoracy P7.6%A thoracolumbar fracture needs to be treated at the earliest stages. The system can be implemented in android device using Tensorflow		in human bone x-		K-Nearest Neighbor (KNN)	Accuracy—	features.
Image: heat stateRegeneration of thoracolumbar fractures using a CNN architecture.Regeneration of thoracolumbar fractures.Regeneration of thoracolumbar fracture.Regeneration of thoracolumbar fracture.Showed that the ensemble model that combines BPNN + SVM + KNN with both texture and shape features significant improvement in terms of accuracy and precision.11Automated systemRegnavendra, U., et al. [11] 2018Convolutional Neural Network (CNN)Neural Accuracy of thoracolumbar fracture needs to be treated at the earliest stages. The system can be implemented in android device using Tensorflow		ray images			90.46	Experimental results
Image: height back back back back back back back back					KNN	showed that the ensemble
Image: height of the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Neural Network (CNN)Neural Neural Network (CNN)Accuracy of the detection of thoracolumbar fracture needs to be treated at the earliest stages. The system can be implemented in android device using Tensorflow					Accuracy—	model that combines
Image: height of the system for the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Neural Neural Neural Network (CNN)Accuracy and precision.A thoracolumbar fracture needs to be treated at the earliest stages. The system can be implemented in android device using Tensorflow					89.76	BPNN + SVM + KNN with
11Automated system for the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Network (CNN)Neural Neural Neural Neural Neural Neural Accuracy 97.6%A thoracolumbar fracture needs to be treated at the earliest stages. The system can be implemented in android device using Tensorflow						both texture and shape
Improvement in terms of accuracy and precision.11Automated system for the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Network (CNN)Neural Provement in terms of accuracy and precision.A thoracolumbar fracture needs to be treated at the earliest stages. The system can be implemented in android device using Tensorflow						teatures significant
11Automated system for the detection of thoracolumbar fractures using a CNN architecture.Raghavendra, U., et al. [11] 2018Convolutional Network (CNN)Neural Network (CNN)Accuracy 97.6%-A thoracolumbar fracture needs to be treated at the earliest stages. The system can be implemented in android device using Tensorflow						accuracy and precision
Automated system for the detection of thoracolumbar fractures using a CNN architecture.	11		Paghayondra U	Convolutional Nouvel	Accuracy	A thoracolumbar fracture
for the detection of thoracolumbar fractures using a CNN architecture.	11	Automated system	raginavenura, U., et a] [11] 2019	Network (CNN)	97.6%	needs to be treated at the
thoracolumbar fractures using a CNN architecture.		for the detection of	ccai. [11] 2010		57.070	earliest stages The system
fractures using a CNN architecture.		thoracolumbar				can be implemented in
CNN architecture.		fractures using a				android device using
101301110W		CNN architecture.				Tensorflow.

Volume: 07 Issue: 05 | May 2020

www.irjet.net

12	Determining the type of long bone fractures in x-ray images	Al-Ayyoub, et al [12] 2013	Support Vector Machine (SVM), Decision Tree (DT), Nave Bayes (NB)	Accuracy – 85%	SVM classifier was found to be the most accurate than other classifiers. Integrating the proposed technique into the software of an x-ray machine is very useful for teaching and research purposes.
13	Machine Learning on Mobile: An On- device Inference App for Skin Cancer Detection	Dai, Xiangfeng, et al [13] 2019	Convolutional Neural Network (CNN) using TensorFlow	Accuracy – 75.2%	The system can be modified for fracture detection in android device using Tensorflow lite.
14	Automated Skin Disease Identification using Deep Learning Algorithm	Patnaik, Sourav Kumar, et al [14] 2018	Inception V2 Inception V3 MobileNet	Accuracy – 88%	MobileNet is light weight architecture and fast model, so it is preferred for mobiles and embedded applications for fracture detection.
15	Diagnosis of skin diseases using Convolutional Neural Networks	Rathod, Jainesh, et al. [15] 2018	Convolutional Neural Network (CNN)	Accuracy – 90%	Bone fractures can be diagnosed using CNN technique and also be classified using the same.
16	MobileNets for Flower Classification using TensorFlow	Gavai, Nitin R., et al. [16] 2017	Convolutional Neural Network (CNN) using MobileNets.	Accuracy – 85%	MobileNets can be used for classification of fracture images and to develop android applications.
17	An Android Application for Plant Identification	Cheng Qian, et al. [17] 2018	Joint classifier which combines the back propagation neural network(BPNN) with a weighted k-nearest- neighbor (KNN)	Accuracy – 92.8%	An android application identifies plant species and same can be modified to identify and classify fractures.
18	Dermatological Disease Detection Using Image Processing and Machine Learning	Vinayshekhar Bannihatti Kumar, et al [18] 2016	kth Nearest Neighbor (kNN), Decision Trees (DT), Artificial Neural Networks (ANN)	Accuracy 95%	The system has two Stage refinement process and combining the two stages increases the accuracy and efficient of the dermatological disease detection. Same can be used for classification of bone fractures.

III. CONCLUSION

The survey has done on Bone Fracture Detection and Classification. This paper displays the different existing strategies proposed by various creators. Here comparison made between existing techniques on the basis of classification methods used and the accuracy. There are several image processing techniques for the detection of the bone fracture. Canny Edge Detection method with sobel operator is most commonly used for fracture identification. The machine learning is very powerful strategy for the classification of type of fracture. The accuracy of the classification of fracture mainly depends on the size of the dataset, quality of the images and number of epochs used for training the model and the method used for classification. The different techniques can be cascaded for higher classification accuracy. There are future scopes of improvements in present techniques as no model guarantee hundred percent accuracy.

REFERENCES

[1] Myint, Wint Wah, Khin Sandar Tun, and Hla Myo Tun. "Analysis on Leg Bone Fracture Detection and Classification Using X-ray Images." Machine Learning Research 3.3 (2018): 49.

[2] Tripathi, Ankur Mani, et al. "Automatic detection of fracture in femur bones using image processing." 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS). IEEE, 2017.

[3] Johari, Nancy, and Natthan Singh. "Bone Fracture Detection Using Edge Detection Technique." Soft Computing: Theories and Applications. Springer, Singapore, 2018. 11-19.

[4] Dhiraj B. Bhakare, Prajwal A. Jawalekar, Sumit D. Korde. "Novel Approach for Bone Fracture Detection Using Image Processing" International Research Journal of Engineering and Technology (IRJET) 2018.

[5] Myint, San, Aung Soe Khaing, and Hla Myo Tun. "Detecting leg bone fracture in x-ray images." Int. J. Sci. Technol. Res 5 (2016): 140-144.

[6] Kurniawan, Samuel Febrianto, et al. "BONE FRACTURE DETECTION USING OPENCV." Journal of Theoretical & Applied Information Technology 64.1 (2014).

[7] Anu, T. C., and R. Raman. "Detection of bone fracture using image processing methods." International Journal of computer applications 975 (2015): 8887.

[8] Wu, Zhengyang, et al. "Classification of Reservoir Fracture Development Level by Convolution Neural Network Algorithm." 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). IEEE, 2018.

[9] Cao, Yu, et al. "Fracture detection in x-ray images through stacked random forests feature fusion." 2015 IEEE 12th international symposium on biomedical imaging (ISBI). IEEE, 2015.

[10] Umadevi, N., and S. N. Geethalakshmi. "Multiple classification system for fracture detection in human bone x-ray images." 2012 Third International Conference on Computing, Communication and Networking Technologies (ICCCNT'12). IEEE, 2012.

[11] Raghavendra, U., et al. "Automated system for the detection of thoracolumbar fractures using a CNN architecture." Future Generation Computer Systems 85 (2018): 184-189.

[12] Al-Ayyoub, Mahmoud, and Duha Al-Zghool. "Determining the type of long bone fractures in x-ray images." WSEAS Transactions on Information Science and Applications 10.8 (2013): 261-270.

[13] Dai, Xiangfeng, et al. "Machine learning on mobile: An on-device inference app for skin cancer detection." 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC). IEEE, 2019.

[14] Patnaik, Sourav Kumar, et al. "Automated Skin Disease Identification using Deep Learning Algorithm." Biomedical & Pharmacology Journal 11.3 (2018): 1429.

[15] Rathod, Jainesh, et al. "Diagnosis of skin diseases using Convolutional Neural Networks." 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA). IEEE, 2018.

[16] Gavai, Nitin R., et al. "MobileNets for flower classification using TensorFlow." 2017 International Conference on Big Data, IoT and Data Science (BID). IEEE, 2017

[17] Cheng, Qian, et al. "An Android Application for Plant Identification." 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC). IEEE, 2018.

[18] Kumar, Vinayshekhar Bannihatti, Sujay S. Kumar, and Varun Saboo. "Dermatological disease detection using image processing and machine learning." 2016 Third International Conference on Artificial Intelligence and Pattern Recognition (AIPR). IEEE, 2016.

[19] Dhiraj B. Bhakare, et al. "A Novel Approach for Bone Fracture Detection Using Image Processing" 2018 International Research Journal of Engineering and Technology, IJRET, 2018.

[20] Lum, Vineta Lai Fun, et al. "Combining classifiers for bone fracture detection in X-ray images." IEEE International Conference on Image Processing 2005. Vol. 1. IEEE, 2005.