An Overview of Boosting Decision Tree Algorithms utilizing AdaBoost and XGBoost Boosting strategies
Syeda Sarah Azmi¹, Shwetha Baliga²

¹Student, Department of Electronics and Communication Engineering, RV College of Engineering, Bengaluru -59, Karnataka, India, syedasarahazmi16@rvce.edu.in, 9742854662
²Assistant Professor, Department of Electronics and Communication Engineering, RV College of Engineering, Bengaluru -59, Karnataka, India, shwethaprabhun@rvce.edu.in, 8892303813

Abstract - Decision tree is a well-known Machine Learning algorithm that is used for regression and classification. It is an inductive inference algorithm mainly known for its interpretability and representability. The internal nodes of a decision tree act like tests whereas the leaf nodes give the final category. Decision trees are known to suffer from bias variance. There is a huge predisposition related with straightforward trees and a huge difference with complex trees. To overcome this drawback Ensemble methods are adopted, it combines the performance of several decision trees to produce a more accurate prediction than a single tree. Boosting is one such ensemble technique. In this paper AdaBoosting (Adaptive Boosting) and XGBoosting (Extreme Gradient Boosting), two famous boosting techniques are discussed.

Key Words: Decision tree, AdaBoost, XGBoost, Boosting, Ensemble techniques.

1. INTRODUCTION

There are different decisions one needs to make regularly. The way toward choosing an alternative from the huge number of decisions is the embodiment of dynamic. Decision tree is a calculation that encourages us settle on choices by taking in all the significant qualities into thought. Decision trees are a profoundly well-known AI (Artificial Intelligence) procedure that has been effectively applied to take care of various functional issues in zones, for example, regular language handling, data extraction, information mining, and example acknowledgment. Decision trees are additionally the establishment of further developed AI strategies, for example, arbitrary backwoods or helped trees [1].

Decision trees experience the ill effects of predisposition difference. To beat this Ensemble methods are utilized. Two such strategies are Bagging and Boosting. Here, boosting procedures are examined AdaBoost (Adaptive Boosting) and XGBoost (Extreme Gradient Boost). AdaBoost is a Boosting group of calculations. This kind of student is portrayed by more consideration on the wrongly arranged examples during preparing, modifying the example dispersion, and rehashing this activity until the quantity of trainings of the powerless classifier arrives at a pre-indicated esteem, finishing the learning [2].

XGBoost is an effective and versatile execution of the Gradient Boosting Machine (GBM), which has been a serious device among man-made brainpower techniques because of its highlights, for example, simple parallelism and high forecast exactness [3].

The structure of this paper is outlined as follows; in Section 2, this paper discusses about the different Machine Learning algorithms starting from simple decision tree progressing to boosting algorithms XGBoost and AdaBoost. Section 3 concludes the paper discussing the various factors that will determine the selection of a particular Machine learning algorithm for classification.

2. MACHINE LEARNING ALGORITHMS

The different Machine learning algorithms are discussed in the following sub-sections.

2.1 DECISION TREE ALGORITHM

Decision Tree is a tree structure similar to the root of a tree. The ID3 algorithm proposed R. Quinlan is known as the most classical one [4]. The root node of the decision tree poses the first most important question depending on the answer the next node is selected from the child nodes, the child node now poses a new question and this process repeats until the leaf node is reached and the data point is finally categorized by the result the leaf node holds. Fig -1 shows the basic structure of a decision tree, each non-leaf node represents an input attribute of data set, "Attribute value" represent the value of this attribute, and leaf node represent value of output attribute.

From the point of view of the entire tree, Decision Tree speak to disjunction of characteristic worth restriction's combination. Each way from the root to the leaves relate to a lot of characteristics of conjunctions, disjunction of these conjunctions compares to the tree itself. So it is anything but difficult to change over into IF-THEN type of arrangement.
rules. As indicated by the arrangement rules obscure information item can be effortlessly characterized and anticipated [5].

![Root Node](image1)

Fig. 1: Basic Structure of a Decision tree

2.2 XGOOOST ALGORITHM

XGBoost stands for Extreme Gradient Boost. It is the streamlined group calculation dependent on GBDT (Gradient Boosting Decision Tree). The principle thought of the boosting calculation is that numerous decision trees perform superior to a solitary one. Every decision tree may make an awful showing. At the point when numerous trees are incorporated, the presentation shows signs of improvement.

Fig. 2: Work-flow of XGBoost

XGBoost is a decision tree-based gathering Machine Learning calculation that utilizes an inclination boosting system. In forecast issues including unstructured data (pictures, content, and so on.) artificial neural systems will in general beat every other calculation or structures. Be that as it may, with regards to little to-medium organized/forbidden data, decision tree based calculations are viewed as best.

2.3 ADABOOST ALGORITHM

AdaBoost stands for Adaptive Boost. An AdaBoost classifier begins with fitting a classifier on the original data set and later starts fitting a copy of the same classifier on an updated dataset which the inaccurate and error prone data points have been balanced out in such a way that the proceeding classifiers can focus on the cases that cause more inaccuracy [7].

Fig. 3: Sample representation of how AdaBoost functions. It keeps magnifying the weight of the misclassified data points in order to correct the error and finally adds up the output of the different classification models to create a more accurate combined classifier.
3. CONCLUSIONS AND FUTURE SCOPE

Decision tree is a broadly utilized calculation yet it experiences certain disadvantages, for example, inclination change. There is a huge inclination related with straightforward trees and a huge change with complex trees. To conquer this disadvantage Ensemble techniques are embraced, it consolidates the presentation of a few decision trees to deliver a more precise expectation than a solitary tree. Boosting is one such group strategy. The AdaBoost and XGBoost boosting algorithms were reviewed in this paper.

This paper focusses on the different ensemble boosting techniques used to improve the result obtained by the classical decision tree algorithm. It is observed that the XGBoost algorithm performs well with large amount of unstructured data but when it comes to small to medium data in a structured form decision tree is the best model to use. AdaBoost on the other hand focusses on the wrongly identified points by increasing the weights of the misclassified data.

AdaBoost is a consecutive gathering procedure though XGBoost is an equal troupe system. Models are free in XGBoost, while in AdaBoost attempts to include new models that do well when past models come up short. Weighted Average is equivalent in XGBoost, while in AdaBoost more weight is given to the models with better execution on preparing information. XGBoost is inclined to over-fitting, yet AdaBoost attempts to decrease inclination. Thus, it is concluded that it is not necessary that the boosting algorithms always outperform the simple decision tree model. The selection of the algorithm to be used it depends on the type of data that needs to be classified.

REFERENCES

