
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 633

Microservices, Saga Pattern and Event Sourcing: A Survey

Repana Reddy Sekhar1, Prof. Veena Gadad2

1Student, Dept. of CSE, R V College of Engineering, Bangalore
2Assistant Professor, Dept. of CSE, R V College of Engineering, Bangalore

---***---
Abstract - Microservices are new architectural model in
which we can arrange an application into independent
services, where each microservice consists of small,
autonomous services, implementing a single business
capability. Most of the applications can be seen as set of
business or logical rules that can be executed when triggered
when an event internal to the system happens or user inputs.
Sagas are sequence of local transactions. In order to decode
what is discussed in the microservice and saga pattern we
found that 25.68% of microservice technical posts on saga
pattern discuss a single technology: Redhat and microprofile.
Event sourcing lets us to design our applications in such a way
that we can store the past states of business entities , enabling
the system to replay old events at will. This paper deals with
most important aspects of today’s modern world of IT that is
MICROSERIVES, SAGA PATTERN AND EVENT SOURCING. We
provide an overview of the concepts and historical trends.

Key Words: Microservices, Saga pattern, Event Bus, Event
sourcing, Docker, Transaction, Kafka.

1. INTRODUCTION

In the traditional monolithic architecture, a software
application is built as a single unit that combines several
services in order to provide business functionalities.
Although monolithic applications are simple to be
developed, they have many limitations, such as difficulty in
evolving, maintaining and scaling computational resources,
which may cause an over (under)provisioning of those
resources. With the advance of cloud computing and
container technologies, Microservices have recently emerged
as a new architectural style to break up distributed
applications into small independently deployable services,
each running in its own process and communicating via
lightweight mechanisms [1]. These services are built around
separate business capabilities and can be written using
different programming languages and different data storage
technologies. They are usually supported by a fully
automated deployment and orchestration machinery, e.g., in
the cloud, enabling each service to be deployed often and at
arbitrary schedules, with a bare minimum of centralized
management [2].

As a result with microservices architecture, there are

number of challenges that comes with. Each independent
microservice has its own database and whenever a business
transaction involves so many services, so we need to have
mechanism to ensure data consistency across services.
Implement each business transaction that spans multiple

services as a saga. A saga is a sequence of local transactions.
Each local transaction updates the database in its service and
publishes a message or event to trigger the next local
transaction in the saga. If a local transaction fails because it
violates a business rule then the saga executes a series of
compensating transactions that undo the changes that were
made by the preceding local transactions [3].

For debugging and storing all the events in the system,

event sourcing lets us to design our applications in such a
way that we can store the past states of business entities,
enabling the system to replay old events at will. Enabling us
to track all the transactions as a sequence of events which
are easy debug and take necessary actions.

This paper discusses the concepts and challenges of

microservices, saga pattern and event sourcing. The rest of
the paper is organized as follows. The next section gives
overview of microservices, saga pattern and event sourcing.
Section III presents challenges in implementing these and
analysis of these implementation. Finally, Section IV offers
some conclusions.

2. MICROSERVICES, SAGA PATTERN AND EVENT
SOURCING: Concepts, Benefits and Drawbacks

 A.Microservices

 Microservices are new architectural model in which we can
arrange an application into independent services, where each
microservice consists of small, autonomous services,
implementing a single business capability, which allows
developers make it easier to understand, develop and test the
application. Each small and independent service has its own
database. Decentralizing the application into smaller
individual service enables us the leverage to select any
suitable technology and frameworks and deploy individually
into the server.

“The characteristics of microservices architecture are:

1) Flexibility: A system is flexible to support all the required
features and has flexibility in choosing the programming
language .

2) Modularity: Each service is independent and can be
developed independently which can be arranged with
other service to achieve the overall behaviour of the
system.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 634

The key benefits of microservices are:

a) Scalability: We can scale and deploy each service
independently leaving the rest of the services unaffected
unlike in monolithic application.

b) Fault isolation: Failure in one service does not allow to
collapse the whole system. If one service fails others are
still available.

c) Decentralized data management: Each service has its own
database and effective data management can be easily
carried out using microservice.

d) Reusability: Reusability of functionality is the key benefit
of the microservices.

Historical trends of using microservices:

Netflix is one of the earliest adopters of microservices, and
one of the most discussed. Netflix started to adopt
microservices architecture in 2009, when this approach
wasn’t known at all. They used Amazon Web Services
platform to set up their microservices. They progressed in
steps moving movie encoding and other non-customer facing
applications. Then they decoupled all other services, which
took almost 2 years to split their monolithic application to
microservices. Now they have about 500+ microservices and
API gateways that handles more than 2 billion requests
everyday.

Spotify was looking for a solution that could scale to
millions of users, support multiple platforms and handle
complex business rules. Currently Spotify has over 800+
services and became less susceptible to large failures.

Uber, when it was just entering the market built their
solution for a single offering in a single city. But as the
company expanded, uber’s system faced problems with
scalability and integration as its system was based on
monolith architecture. Then Uber decided to move their
system into microservices architecture.

eBay, In 2011, when the company had 97 million active
users and 62 billion gross merchandise volume, was moving
to microservices. Everyday, the eBay systems had to deal
with heavy traffic, like 70+ billion database calls and 250
billion search queries. So they thought dividing the system
and introducing microservices will address all the challenges
they faced. Along with other microservices leaders, they
released open-source solutions for the developer community.

Zalando, with their Magento-based eCom-merce system
could not handle high load. The company was desperate need
of new infrastructure. Their decoupling of system started in
2015, where they switched to microservices creating a whole
new working culture and increased their productivity and
added so many innovations.

B. Saga pattern

A saga is a sequence of local transactions where each
transaction updates data within a single service. The first
transaction is initiated by an external request corresponding
to the system operation, and then each subsequent step is
triggered by the completion of the previous one.

Transaction ACID properties:

Atomicity: Transaction either completes fully or fails
completely.

Consistency: Maintain the logical consistency, no matter of
its final outcome.

Isolation: Multiple transactions can occur concurrently
without causing inconcistency of database state.

Durability: The changes of a successful transaction occurs
even if the system failure occurs.

 Eventual consistency is a consistency model used in
distributed computing to achieve high availability that
informally guarantees that, if no new updates are made to a
given data item, eventually all accesses to that item will
return the last updated value.[Wikipedia]

Saga has ACD characteristics, distributed transactions ACID
characteristics the real challenge is to deal with the lack of
isolation in an elegant and effective way. A transaction in a
microservice architecture should be eventually consistent.
Compensations are the actions to apply when a failure
happens to leave the system in an inconsistent state.
Compensations actions must be idempotent; they might be
called more than once.

Types of saga pattern

The two ways to perform sagas:

Choreographic sagas: In this type, the domain events act
as triggers. The first transaction is initiated by an external
request or user’s input, then each local transaction publishes
domain events into event bus that will trigger local
transactions in other services.

Benefits :

 This is a natural and easy way of implementing saga
pattern.

 This is easy to understand and will not require too much
effort to develop.

 All the services are loosely coupled so it does not violate
the principle of microservices.

Drawbacks :

 As the number of services increases or local transactions
increase, this method become more complex and
cumbersome because it can have cyclic dependency
between the stages of saga.

 Testing would become complex as all the participants
should be running.

Orchestration sagas: an orchestrator or centralized
controller tells the participants or services what local
transactions to execute.

Benefits:

 We can avoid cyclic dependencies between participants.

 Complexity can be reduced as participants only have to
execute and reply for the commands.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 635

Drawbacks:

 Too much load on the orchestrator or centralized
controller because we will be concentrating on the
orchestrator logic.

 Increase in the infrastructure complexity because we
need to add extra service.

C. Event sourcing

 Event sourcing is an approach where we catch all the
state changes of an application or business entity as a
sequence of events. It is an excellent way to update the state
of business entity and publish the events automically. The
traditional way to persist the business entities is by saving
the current state of the business entity. Event sourcing
approach is quite different, event-centric approach to persist
the state of application or business entity. Whenever an
entity’s state changes, a new event change is added to the
existing sequence of events. Since adding event to list is
atomic we serve the purpose. The business entity’s state can
be constructed by replaying all the events associated with it.

MongoDB as event store:

MongoDB can act as event store (database of events).
Because of its NoSQL properties, we can query the mongo
collections, replay the events associated with it and
reconstruct the business entity’s state.

Benefits:

 The details of how a business entity or object reached its
current state answers so many questions like how the
flow of system takes place, what are stages the key stages
in the transactions, stages that need more focus, and
100% audit logging.

 Event store logs can be used for debugging and testing the
system, so that we can identify issues while production
and help us to understand how an entity reaches bad
state so that we can avoid them.

D. Apache Kafka as an event bus

 Event-driven architecture is main element of developing
and designing microservices. An Eventbus is a method of
communicating different services with each other without
knowing about one another.

 Event bus is the backbone of microservices. There are so
many messaging queues available like RabbitMQ,
ApacheKakfa, Amazon SQS, TIBCO EMS etc. Among all these
ApacheKakfa is better because it can handle high requests per
second, throughput is high and less complex to include in our
system.

Apache Kafka is a unified distributed platform for handling all
the real time data feeds of an organization. A distributed
platform in Kafka consists of:

 Message queueing

 Message processing

 Message storage

 Thus ApacheKakfa acts as event bus also.

3. Problems faced in implementation of these
concepts

a) The Complexity of microservice system: Each service is
now an independent service that should handle the calls
involving several other services. Complexity might be
because of latency on remote calls, fault tolerance etc.
b) Managing and monitoring microservice: If the number of
services increase in microservices system, managing them
becomes more complicated. If the services are not managed
properly, things can get quite difficult leading to compromise
in quality of system. So, we need to even monitor the system
in a quite efficient way for spotting out the problem if system
fails for some reason.
c) Difficulties on Deployment: Microservi-ces have many
services which need to deployed individually and there can
be complexity in deployment of services because the services
may need to be deployed on different server.
d) Testing: Testing in microservices is more complex
compared to monolithic applications, because we need to
make sure the functionality of each service is working
properly before integration of all the services. And the
indistinct behaviours from microservices can be very hard to
predict and point out.

Problems with saga pattern

 Dirty reads: a transaction read data from a row that is

currently modified by another running transaction
 Lost updates: two different transactions trying to update

the same “data”.
 Non-repeatable reads: re-reads of the same record

(during an inflight transaction) don’t produce the same
results

 Saga should take actions to minimize the impact of lack of
isolation. How you implement this set of countermeasures
(against isolation anomalies) determine how good a
microservice is. Several techniques available: semantic lock,
design commutative operations.

Saga Pattern: semantic lock

 PENDING states, saved into the local microservice store,
indicate that a Saga instance is in progress and it is
manipulating some data needing an isolation level (for
example a customer’s account)
If another Saga instance starts, it must evaluate the existing
PENDING states and pay attention on them. Some strategies
when detecting PENDING states:
 The Saga instance will fail
 The Saga instance will block until the lock is released

coordination and rollout plan

Problems in implementing event sourcing and event bus.

1. Handling entities with long lifespan and complex
business code needs to be handled very carefully
because the number of events that needs to be

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 636

replayed to construct the business entity’s state is
more,

2. When and how the entity’s current state should be
constructed is very important question one needs
to know in implementing event sourcing.

3. Implementing our own event bus is very complex,
so we have to rely on some third party events
busses and messaging queues. There will be
compromise of our needs if we go through available
approaches.

4. Conclusion

 Microservices architecture is changing the way our
business applications are being developed nowadays.
Because it handles the issue of complexity by breaking
down application into independent set of services
which will much faster to build, test and deploy by
which we can increase the availability of services, by
which we can overcome the challenges of monolithic
applications.

 Transactions are an essential part of applications.
Without them, it would be impossible to maintain data
consistency. Maintaining data consistency in business
application is very important. Particularly when you
are working with microservices, things get more
complicated. Each service is a system apart with its
own database, and it is very hard to maintain data
consistency. Saga pattern can help us maintain the data
consistency among the microservices architecture
efficiently.

 Event Sourcing ensures that all changes to business
entity’s state are stored as a sequence of events. We
can query an entity’s state to find out the current state
of the application, and this answers many questions.
However there are times when we don't just want to
see where we are, we also want to know how we got
there.

 This paper summarizes the concepts, benefits and
drawbacks of microservices, saga pattern and event
sourcing. This paper also presents the importance of
event bus. The main challenges that developers face
while implementing these concepts are also discussed.
This paper makes best practices and literature to other
practitioners for microservices, saga pattern and event
sourcing.

ACKNOWLEDGEMENT

Prof. Veena Gadad, Assistant Professor, Department of
Computer Science and Engineering, R V College of
Engineering, Bangalore.

REFERENCES

[1] J. Lewis and M. Fowler, “Microservices,”

https://martinfowler.com/articles/microservices.html,

2014, [Online;accessed 18-January-2017].

[2] S. Newman, Building Microservices. O’Reilly Media,

2015.

[3] Chris Richardson,

https://microservices.io/patterns/data/saga.html

[4] M. Fowler. (2005) Event sourcing. Visited on 2016-10-

11. [Online]. Available:

http://martinfowler.com/eaaDev/EventSourcing.html

[5] B. Golden. (2016). 3 Reasons Why You Should Always

Run Microservices Apps in Containers. Accessed: Nov.

11, 2017.

BIOGRAPHIES

Repana Reddy Sekhar is a Final
year Computer Science and
Engineering Student at R V College
of Engineering

https://martinfowler.com/articles/microservices.html,%202014,%20%5bOnline;accessed%2018-January-2017%5d.
https://martinfowler.com/articles/microservices.html,%202014,%20%5bOnline;accessed%2018-January-2017%5d.
https://microservices.io/patterns/data/saga.html
http://martinfowler.com/eaaDev/EventSourcing.html

