
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5263

PRODUCER-CONSUMER PROCESS SYNCHRONIZATION IN MULTICORE

SYSTEM AND ENERGY PROFILE

Sahana P K1, Soumya A2

1Under Graduate Student, Department of Computer Science Engineering, RV College of Engineering,
Karnataka, India

2Associate Professor, Department of Computer Science Engineering, RV College of Engineering,
 Karnataka, India

--***---

Abstract : Interaction between processes producer and
consumer or parent and child process usually is time
consuming. The consumer waits for the producer to produce
the buffers and populate them so that it can use the populated
buffer. This usually results in a convoy effect, wherein one
process that keeps a crucial segment is forestalled, other
processes on separate processors that wait for the buffer
cannot continue. There is wastage of time as consumer
process does not start until producer populates the buffers.
Since the advent of the multicore era, coordination between
producer and user is the most perfect fit. The consumer and
producer classical adapt to these architectures and enables
strong task and data parallelism to be accomplished. Hence
this model should be improved further by bringing about non-
blocking synchronous implementation and develop a dynamic
algorithm for the multiple producer-consumer problem, in
which consumers in a many core structures use learning
mechanisms to predict creation rates of items and thereby
reduce energy use. Hence producer consumer algorithm is
useful in multiple scenario, bringing about synchronization
between processes and reducing overall energy consumption
and brings about efficient utilization of computer resources.

Keywords: Producer/consumer synchronization, non-
blocking, synchronization

1.0 INTRODUCTION

Heterogeneous Systems involve more than one core to
efficiently process a task. There are lot of real time cases
which has high computation needs that can be only met only
with usage of the multiple cores available. This is a typical
problem in parallel computing, where 2 procedures share a
common buffer, the producer and the consumer. Because
these processes operate concurrently, they will coordinate to
avert deadlocks and race conditions [2].

The benefits of non-blocking synchronization can be seen in
a variety of applications operating on top of modern
multiprocessors by using them on a wide range of
applications with various communication characteristics,

meaning that applications not spending any time in
synchronization are also used, as well as adjusted lock-
based synchronization points of such applications where
necessary. The main advantage of non-blocking
synchronization is seen in sporadic applications. While the
significance of these implementations is projected to grow in
the future, it is also anticipated to increase the value of lock-
free synchronization in high-performance parallel systems
[9].

The Producers (parent process) are process that work on
the input information and generate outputs that will then be
submitted to the Customers that is child process [3].
Consumers(child process) is one who obtain the information
from the parent, work on the information and then generate
outcomes that will either retained in the main memory or
transferred to the next customer in producer - consumer
chain (and thus therefore play the function of the parent
process)[3]. Thus Producer-Consumer model can be
implemented in multicore processor.

Producer consumer program can be implemented in
multiple ways [2][4]:

 Mutex uses variables to indicate when data is
accessible to the producer and when for consumer.

 Semaphores implementation for synchronizing the
fullness and emptiness us es 2 semaphores.

 Batch processing (BP) is like applying a semaphore,
only that the process pauses until the shared
memory region is complete and then executes all
the objects in the common shared buffer in one
batch.

 Periodic Batch Processing (PBP) is identical to BP
execution in that the user executes the batch within
a set stretch frame.

Each can bring about synchronization between processes in
different way and have different energy usage.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5264

2.0 SYNCHRONIZATION

Heterogeneous Systems usually involve more than one core
to efficiently process a task. Each subsystem has its own
process to carry out or run, there might exist dependencies
between the subsystem. Some subsystem might need to wait
for another subsystem to finish some tasks before it can
resume working or begin working on that related task. This
works typically like producer consumer setup; producer
allocates buffer memory and populates the buffers until then
consumer process won’t begin, this idle waiting time can be
removed if synchronization is brought about between
processes. Critical section is a section of code that can be
gained access by only one process at a time. It contains
shared data which need to be synchronized to maintain
consistency and validity of data. In this case the common
buffer is the critical section. If both the processes access the
same memory, there is a chance that the final value in the
buffer is incorrect, all the race processes agree that their
performance is false, and this phenomenon is known as race
phenomenon. Many processes simultaneously view and
process the manipulations over the same records, so the
outcome depends on the order the view takes place in.

Mutual exclusion comprises of bringing together activities
into critical sections that are not once interweaved during
program execution, thus guaranteeing that other processes
do not get view of the unpredictable states of a certain
method]. Condition synchronization postpones process until
the system state satisfies some stated condition [1].
Consider one case where communication is every so often
realized through a shared buffer between a source process
and the target process. The writer(producer) writes in the
buffer; from the buffer the recipient reads. The previous is
used to guarantee no interpretation of a partly written
buffer. The latter guarantee that a shared data is not
overwritten into, and that a shared data is not read over
once [5].

Concurrent software execution leads to series of atomic acts
per each operation. History is a specific execution of a
program that is equal to the orders of atomic acts generated
by the processes. Note that the number of likely histories in
the number of atomic acts is exponential. An abstract way of
characterizing the possible histories created by a program is
by using a programming logic to construct a proof of
correctness [1][5]. A convenient way of expressing such a
proof is through a proof description consisting of the
program text scattered with declarations.

Consider an atomic statement B, it is preceded and
succeeded by a statement.

{A} B{C}

This means that if execution of B is started only when A
finishes, and C starts after B finishes. A is considered the
precondition of B and C is considered the postcondition of B
[1]. Therefore, B is used as a predicate transformation as it
converts the condition from one where A is valid to one
where C is valid [5].

Semaphores are abstract data structures on which each
illustration is handled by two functions defined below.
These functions have condition that number of times eq1 is
completed is never more than number of times eq2 is
completed [1]. The sem, is semaphore whose value is
determined by number of times P and V is executed.

 P(sem): :(awaits>O+sem=sem-1) eq (1)
 V (sem): :(sem =sem+1) eq (2)

A special type of semaphore is binary semaphore, the
condition is number of times P is executed is 1 more than V
at the most [1][5].

P(bins): (await bins>0 bins: =bins -1),
V(bins): (await bins < 1  bins: = bins + 1).

 In the question of producers/consumers, producers submit
messages which consumers receive. The processes interact
by means of a shared mutual buffer which is controlled by
two operations: deposit and fetch [1]. Deposit is called when
producer has to insert message and fetch is called to obtain
message by consumer. The deposit and fetch should
alternate with first being the former, this condition is there
so that the message isn’t made inconsistent by overwriting
[5].

The important part is the beginning and finishing of
execution of deposit and fetch [1][5]. Therefore, enterD and
leaveD are integer values which list amount of occasions
that producers have begun and finished deposit execution
similarly enterF and leaveF are integer values which list the
amount of occasions that producers have begun and finished
fetch execution

PC: enterD <= leaveF + 1 ^ enterF <= leaveD [5].

In terms, this implies deposit may be begin at most one more
time than fetch has been finished, and fetch cannot start
more times than deposit has been done [1].

variable buffer: X // for some type X
variable E, F: semaphore = 1 & 0 // Invariant 0 s E + F < 1
ProducerProcess [a: l.. A]: while true item c produced
 deposit: P(E)
 buffer: = c
 V(F)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5265

 ConsumerProcess [b: l.. B]: while true fetch: P(F)
 c: = buffer
 V(E)
 Item c consumed

Both full and empty are semaphores in the solution. In fact,
they create a split binary semaphore together. In binary
semaphore the initial value of one of the semaphores is one
[5]. The part of program which had to me synchronized is in
between P and V, hence mutual exclusion is brought about.
When 1 process enters this region the value of semaphore
will be 0 hence ensuring no other process can enter this
region.

3.0 PROGRAMMING MODEL FOR MULTICORE
ARCHITECHTURE

The two major paradigms for leveraging multi-core system
parallelism are: parallel data paradigm, and parallel task
paradigm. The data is divided into subsets of sequential
computing set of instructions, each of which is then
processed separately by a processing machine. Programs
representing this approach gain a large degree of
parallelism, often reaching super-linear speed-ups due to re-
use of the cache rows. Nonetheless, system dependencies
are popular due to the complexity of the current
frameworks and it is not often feasible to split the data.

Within the parallel task model, each processor unit is
committed to executing a particular task. Such tasks may
either be subtasks within a program, or multiple instances
within the same system. Nonetheless, according to the data
parallel model, it is often challenging to define these
activities, or it is not even feasible to perform separate
instances of the same program due to a lack of data [6].

In P/C model program will be divided and categorized into
producer or consumer role [3]. The Producers are tasks that
perform on the input data and generate results that later
submitted to the Consumers. Consumers are the functions
that obtain the data from the producers, perform some job
on the data and then generate the tests that can either be
retained in the main memory or transferred to the
subsequent user [3][7].

 This concept is used in various scenarios. The Producer
supervises the compilation of all data activities in a GUI
structure while the Customer utilizes this occurrence to
execute the necessary behavior. The Processor distributes
the frames among a collection of Customers in an MPEG-4
video encoder, which encodes them.

4.0 PRODUCER -CONSUMER ENERGY PROFILE AND
OPTIMIZATION

Energy consumption is a very important factor which should
be considered, and as this producer consumer model is used
in diverse ways, in depth analysis of energy usage by
different producer consumer application should be done. In
this paper energy consumption is measured using two
approaches: PowerTop1 and RunningAveragePowerLimit
(RAPL).

 PowerTop is a prominent software which makes use of
counters for processor output to estimate the power
usage of all processes operating on device [2]s.

 RAPL, an app built to track and regulate the power
usage of different Intel CPUs.

 Testing is performed using a M: M:1: B queue dependent
virtual dataset. Meaning 1 customer is present for each
producer and output and processing periods are exponential
in nature, and items are buffered in a buffer of size B [4].

The 5 features measured in each experiment:

 The energy consumption/energy profile
 Number of Wake-ups
 CPU usage
 CPU idle percentage
 CPU average frequency percentage

Mutex and Semaphore deployment of wakeups are identical
in amount as is their energy usage. Batch processing has a
relatively large amount of wake-ups, which can be
interpreted by customers waiting for the buffer to be full,
ensuing in a longer idle time, an ability that the dynamic
power management (DPM) utilizes to bring the process to
sleep. PBP achieves a solution by implementing a regular
process(consumer) restart, which decreases the amount of
wake-ups by around 49 percent, because there are quicker
idle cycles and therefore fewer ability to bring the machine
to sleep [2]. This reduction in the amount of wake ups
contributes to greater usage, as the CPU has little hope of
sleeping so long.

When staying in lower frequencies, Mutex and Semaphore
have small ratios, with a 3 GHz jump. Therefore, they use
comparatively large energy likened to batch-based
implementations. In comparison, BP invests much of the day
at the lowest 800MHz CPU frequency (18.6 per cent). PBP
invests far less energy on frequencies in range of 800 MHz
PBP is better than BP because, at higher frequencies CPU
consumes less energy relative to BP. Wake up is done only
when buffer is filled in BP thereby the average frequency at
which CPU runs is higher [2]. The nature(periodic), though,
keeps that from occurring, because it always stimulates
consumers to buy a limited amount of products, and the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5266

consumers may soon be idle again. This makes it difficult for
the CPU to ascend to higher frequencies. PBP's wake-up
figures are fewer than BP's. PBP finishes processing the
dataset marginally quicker, owing to the regular consuming
of objects.

The effect is a correlation of 0.73 between the CPU
frequency (weighted average) and both power and energy,
and a correlation of 0:71 with the amount of wake-ups per
second and energy / power [2].
Therefore, the major disparity in energy usage between
batch implementation and all other implementations is
attributed to the lower average frequency induced by the
higher number of wake-ups. Response time latency is the
major drawback of BP. Implementations for Mutex and
Semaphore-based are often less latentious. Hence, plus
points of both, less latency and energy efficiency can be
combined [4].

In a multicore system, this producer consumer problem,
each consumer is allied only with 1 producer, a innovative
energy-efficient algorithm is suggested [4]. This method is
focused on complex, periodic batch processing, since
consumers are processing a series of products and enabling
the CPU to move to idle mode, thereby saving resources.
Consumers forecast the amount of incoming data products,
then work together themselves. This contributes to two
energy reducing effects:

 the total amount of wake-ups is pointedly condensed
compared the algorithm in question, and

 High loads are mitigated and evenly spread stopping
Dynamic Voltage and frequency scaling (DVFS)
processes from supporting the CPU frequency, resulting
in the Processor consuming more of the time at lower
frequencies [4].

This algorithm has been observed and it can lessen energy
consumption by 40 percent compared to the other 2 when
running multiple (5-10) consumers. In datum, it offers up to
18 percent enhancement over a simple BP execution. It is a
detected that this algorithm outshines when number of
consumers are more, hence becoming more scalable and
robust [2][4].

REFERENCES

[1] Andrews, G.R. "A method for solving synchronization

problems", Science of Computer Programming, 1989
[2] R. Medhat, B. Bonakdarpour and S. Fischmeister,

"Energy-Efficient Multiple Producer-Consumer," in IEEE
Transactions on Parallel and Distributed Systems, vol.
30, no. 3, pp. 560-574, 1 March 2019.

[3] "Architecture of Computing Systems – ARCS 2013",
Springer Science and Business Media LLC, 2013

[4] Ramy Medhat, Borzoo Bonakdarpour, Sebastian
Fischmeister. "Energy-Efficient Multiple Producer-
Consumer", IEEE Transactions on Parallel and
Distributed Systems, 2019

[5] Gregory R. Andrews. "A method for solving
synchronization problems", Science of Computer
Programming, 1989

[6] Lecture Notes in Computer Science, 2013.
[7] Arnau Prat-Pérez, David Dominguez-Sal,Josep-Lluis

Larriba-Pey, Pedro Trancoso."Chapter 10 Producer-
Consumer: Programming Model for Future Many-Core
The Processors", Springer Science and Business Media
LLC, 2013 Programming Model for Future Many-Core

[8] Yi Zhang. "Evaluating the performance of nonblocking
synchronization on shared-memory multiprocessors",
Proceedings of the 2001 ACM SIGMETRICS international
conference on Measurement and modeling of computer
systems - SIGMETRICS 01 SIGMETRICS 01,2001

[9] "Languages and Compilers for Parallel Computing",
Springer Science and Business Media LLC, 2013

[10] Fred B. Schneider. "On Concurrent Programming",
Springer Science and Business Media LLC, 1997

