
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4485

Exploring REST and RESTful Web Services: A review

Chinmaya Kannur1, Mamatha T2

1Under Graduate Student, Dept. of Computer Science and Engineering, RV College of Engineering, Bengaluru,
Karnataka

2Assistant Professor, Dept. of Computer Science and Engineering, RV College of Engineering, Bengaluru, Karnataka

---***---
Abstract - In order to make powerful, reliable and user-
friendly and web applications and web services, developing
consolidated web applications is very important. In this paper
we will showcase the goals of REST, the idea of REST and
RESTful web service design principles and features of RESTful
services with examples. In recent times, REST gained more
popularity and is being widely used for web services
development. Learning RESTful web Service can make the web
development easier in many ways.

Key Words: Rest, Restful Web Services, Representation,
Caching, Stateless.

1.INTRODUCTION

REST (REpresentational State Transfer), is derived from Roy
Fielding’s Ph.D. thesis [1]. In his thesis, REST architectural
style was introduced and developed as a hypothetical model
of the web architecture to guide the renovation and
interpretation of the URIs and HTTP. This style characterizes
the base of WWW (World Wide Web). Few technologies are
used to help in putting together this base include mark-up
languages such as HTML (Hyper Text Mark-up Language)
and XML (Extensible Mark-up Language), Hypertext Transfer
Protocol (HTTP), Uniform Resource Identifier (URI) and
web-favourable formats such as JSON. REST is an
architectural approach for structured applications. The
target of REST to create a reliable web program and to take it
further. For instance, when a user clicks a link on a web page,
the program would form another web page, return to the
user and progress further. For example, a client requests the
details of the bus running from source A to destination B, the
web page in the return would include the list of buses run on
that particular route and the links to the corresponding
timetable. When the client would get the result, he/she can
choose a link to find which bus to board. REST is not a
protocol, it is a derived architecture for characterizing a
stateless, caching client-server distributed-media platform. A
REST architecture can be achieved using several
communication protocols, but HTTP is the most preferred
protocol.

Fig - 1: REST architecture

1.1 Goals of REST

Main goals of REST are as follows:
(1) Interactions among components should be scalable
(2) Abstract interfaces
(3) Deployment of components independently
(4) Intermediate components for reducing latency in
interaction and security enforcement
The components in the REST system should adhere to the
following constrain:
(1) Resource identification
(2) Resource manipulation through representations
(3) Self-explanatory messages.

1.2 Concept of REST

In REST system, all the resources have an URI tagged to
themselves. Using the standard HTTP methods, a user can
access the resources. Developers have to examine every
method’s syntax to decide the suitable methods for each
resource. The GET method must be safe for clients to call
many times because returns a depiction of a resource and
returning a different depiction every time is not acceptable.
The PUT method puts a new state in the resource replacing
the older state, while DELETE method is used to delete
resources. The POST method is used for creating or
extending resources.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4486

2. Features of a RESTful services

Resources are integral part of each and every system in the
world. Resources can be anything which can be represented
in a computer-based system such as, business information,
web pages, video files, pictures, etc. The aim of a service is to
give its clients a window, so that resources can be accessed
by the clients. For high quality performance of clients’
RESTful services are expected to have following features:

• Representation
• Message
• URI
• Uniform interface
• Stateless
• Caching

Representations: The main point in a RESTful service is
about resources and how to give access to those resources.
The first thing to do while designing a system, is to identify
the resources and identify the relationship among
themselves. This step is identical to the first step in database
designing: identifying entities and relations. When the
resources are identified, the next thing to do is finding a way
to represent the resources in the system. Any format can be
used to represent the resources, as REST does not stick to a
specific format for representations. Generally, XML or JSON
are preferred. For example, a "Person" resource is depicted
as:

Fig - 2: JSON representation of a resource

Fig - 3: XML representation of a resource

More than one format can be used depending on the
category of client or some request criteria. For a
representation to be considered as good, it should have few
mandatory qualities:
• Client and server must be capable of understanding the
format of representation.
• A resource must be represented completely by the
representation. If there is need to represent a resource
partially, then the resource has to be broken down into child
resources. This would make it easy for transfer of resources
and it will take less time in resource creation. Hence making
a service faster.
• Representation must be able to link resources among each
other. This can be ensured by mentioning the URI of the
linked resource in the representation.

Messages: The client and server communicate with each
other through messages which contains some metadata.
Client sends a request to the server, and the server
interprets and replies back with suitable response.

HTTP Request

Fig - 4: HTTP request format

 VERB: indicates the HTTP method used.
 URI: is the resource URI on which operation is going

to be done.
 HTTP Version: HTTP v1.1.
 Request Header: has the metadata in the form of a

set of key/value pairs of headers and its
corresponding values. These headers contain details
about the message and its sender such as,
authorization used, formats supported by the client,
type of format of message body, cache
configurations for response, type of client and much
more details.

 Request Body: is the absolute message content. This
is the place which shows the resource
representations.

Fig - 4 is a sample request message using POST method,
which will place a new resource called “Person”.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4487

Fig - 5: Sample request using POST method

HTTP Response

Fig - 6: HTTP response format

 Response code: server returns a 3-digit response
code, which indicates request status.

 Response Header: has the metadata about the
response.

 Response Body: has the representation if request
was successful.

Fig - 5 is a sample of response received for the request
mentioned in fig - 3:

Fig - 7: An actual response to a GET request

Addressing Resources: Each resource should have at least a
single URI tagged to it in REST service. The function of an
URI is to determine a resource or a set of resources. A
RESTful service maintains a directory with hierarchy of URIs.
The actual action is decided by the HTTP verb. The URI
should not reveal anything about the operation or action
because this will allow the client to call same URI with
various HTTP verbs to perform various actions.

For an instance there is a database of persons and to show it
to any end user, person resource can be addressed like this:

http://myservice/persons/1

Fixed format for URL:
Protocol://ServiceName/ResourceType/ResourceID

These are few suggestions for well-maintained URIs:

• For naming resources make use of plural nouns.

• Do not use spaces, they may create confusion. Use
an underscore or hyphen instead.

• A URI is case insensitive.

• Stick to a single naming convention.

• A URI never changes.

Query Parameters in URI

The following URI has a query parameter:

http://myservice/persons?id=1

However, this approach has a few disadvantages.

• Will reduce readability and increases complexity.
• Search engine indexers and crawlers do not catch

URIs with query parameters. This will hide the
web service from search engines.

The basic aim of query parameters is to give parameters to
an operation that requires the data items. For example, if the
format of the presentation has to be decided by the client,
then it can be done like this:

http://myservice/persons/1?format=xml&encoding=UTF8

Putting the query parameters in the URI as h hierarchy itself
will not make any sense because, they do not possess any
relation among themselves:

http://myservice/persons/1/xml/UTF8

Query parameters should only be used when there is a need
to provide parameter values to a process.

Uniform Interface: Uniform interface is necessary for
RESTful services. For this purpose, HTTP 1.1 gives a set of
methods, called as verbs. Few of important verbs:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4488

Fig - 8: Verbs

An operation is called as safe if it does not affect the original
value of the resource. An operation is called as idempotent
when an operation gives the same result no matter how
many times you perform it. Similarly, a safe HTTP method
does not create any changes to the resources on a server. An
Idempotent HTTP method does not depend on number of
times it is performed.

Statelessness: A RESTful service is a stateless service. A
request is not dependent on a past request and a service
assumes each request as an independent request. By design
HTTP is a stateless protocol, and extra effort has to be put to
design a stateful service with help of HTTP. A clear
understanding has to be there about a stateful and stateless
design to avoid misinterpretation.

A sample of stateless design URI:

Request1: GET http://myservice/pets/1 HTTP/1.1

Request2: GET http://myservice/pets/2 HTTP/1.1

A stateful design URI sample:

Request1: GET http://myservice/pets/1 HTTP/1.1

Request2: GET http://myservice/nextpet HTTP/1.1

To execute the Request2, the server should know the PetID
that the client last requested i.e. the server has to know the
current state — or else Request2 will not be executed.
Therefore, designing a stateless service is more preferred, so
that it can never refer to previous state. Stateless services
are easier to maintain, scalable, easy to host. Even these
types of services give good response time to requests.

Caching: Caching is a technique of storing the produced
results and using those stored results in the near future
instead of producing the results repeatedly. This process can
be done either on the client side, server side, or on any
intermediate component between client and server, such as

a proxy server. Caching is a good way to improve the
working of REST service, but if not handled properly, it can
serve stale results to the client.
Caching can be controlled using these HTTP headers:

• Date – date and time of representation generation
• Last Modified - date and time when the server last

modified this representation
• Cache-control - HTTP 1.1 header is used for control

caching
• Expires - expiry date and time of the representation.
• Age - duration passed in seconds since the

information was fetched from the server
Values of the above headers can be used along with the
directives in a Cache-Control header to check if the cached
results are still valid or not. The most common directives for
Cache-Control header are:

• Public
• Private
• no-cache/no-store
• max-age

3. CONCLUSIONS

 This paper introduced the basic knowledge about RESTful
web service, introduced the goals of REST, the idea of REST,
RESTful web service design principles and features of
RESTful services with examples. With the need of REST and
the RESTful web service in the market, it is a must for a Java
developer to know REST. Because of the REST, RESTful web
service will be more important in Java Enterprise
Applications development in coming years.

REFERENCES

[1] R. T. Fielding, "Architectural Styles and the Design of

Network- based Software Architectures," California,
Irvine: University of California, 2000

[2] J. Sandoval, Restful Java Web Services. Packt Publishing,
2009.

[3] L. Richardson and S. Ruby, RESTful Web Services
.O'Reilly Media, 2007.

[4] S.Vinoski, RESTful Web Services Development Checklist.

[5] https://www.drdobbs.com/web-development/restful-
web-services-a-tutorial

[6] Xuan Shi. "Sharing Service Semantics using SOAP-Based
and REST Web Services.". IT PRO. Vol 8, Issue 2,
March/April 2006. pp18-24 in press

[7] Cesare Pautasso, Olaf Zimmermann and Frank Leymann.
"RESTful Web Services VS. "Big" Web Services: Making
the Right Architectural Decision". in press

[8] Leonard Richardson and Sam Ruby. "RESTful Web
Services". Dongnan Industry Press, 2007, pp243-251.

