
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3834

Review on Spring Boot and Spring Webflux for Reactive Web

Development

Rakshith Rao R1, Dr S R Swamy2

1Student, Department of Computer Science and Engineering, R.V. College of Engineering, Bengaluru,
Karnataka, India

2Professor, Department of Computer Science and Engineering, R.V. College of Engineering, Bengaluru,
Karnataka, India

---***--
Abstract - Web applications constitute a major share of the
applications powering today’s businesses and technology. With
the increase in userbase, robust applications must be built to
serve the requests. Asynchronous and distributed systems serve
to solve this problem effectively.

In this paper, we provide a detailed review of Spring Boot,
reactive programming and how reactive systems can be built
using Spring Boot and Spring Webflux. We also discuss the
support for coroutines provided by Kotlin. The paper also
reviews how effective systems can be built by combining
imperative and reactive paradigms.

Key Words: Spring boot, Spring Webflux, Reactive
programming, Kotlin coroutines

1. INTRODUCTION

Modern enterprise web applications handle millions of
requests each second. This requires development of robust
backend services which scale effectively. Developing the
applications as monoliths becomes a bottleneck while
scaling and extending the applications. Because of this the
modern applications are built using microservice
architecture which enables easy scaling. This saves a lot of
cost while deployment of applications. The individual
services should also serve the requests asynchronously in
order to avoid long delays.

Spring Boot together with Spring Webflux provides very
good solution for development of these kind of applications.
Spring Webflux is based on the reactive programming model
which helps asynchronous request processing. Language
support such as coroutines provided by Kotlin further eases
reactive programming and helps to create robust
applications.

2. Spring Boot review

Spring Boot enables development of stand-alone Spring
based applications with production quality which can directly
be run using the embedded tomcat server. This avoids the
creation of unnecessary WAR files for deployment. Spring
Boot comes with many default configurations and provides
an opiniated view of a Spring application. It also includes

some default third party JARs common to all Spring
applications.

Spring Framework is based on JVM languages and gives
complete infrastructure support for writing effective web
applications. Spring provides more time for the development
of the application and reduces the configuration.

Spring boot applications can be easily created using Spring
Initializr, which is a bootstrapping tool provided by the
Pivotal team. The dependencies required by the application
can be chosen while generating the project. Further Spring
boot doesn’t provide web.xml for configuring the application
and avoids the overhead induced in managing XML files.
However, it provides support for modifying the configuration
of the applications using annotations. Adding
@EnableAutoConfiguration annotation or
@SpringBootApplication to the main class, automatically
configures the applications based on JAR dependencies [2].

Fig -1: Spring boot integration with Spring MVC and
Spring Webflux [3]

Spring Boot provides an effective way to build microservices
which implement a single business capability. Developing the
whole application based on microservice architecture has
many advantages such as,

1. High scalability

2. Loose coupling

3. Fault tolerance and fault isolation

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3835

4. Ability to use different technologies for different
microservices.

5. Easier to understand a single microservice
compared to the entire monolith.

6. Easier development and deployment of individual
services.

Spring 5.0 framework supports both the core Spring MVC and
Spring Webflux through Reactor core, thus enabling the use
of Spring boot on top of Spring Webflux.

3. Spring Boot application architecture

Spring Boot has a layered architecture in which each layer
communicates with the layer directly below and above it.
The four layers in Spring Boot are as follows:

1. Presentation Layer: This layer processes the HTTP
requests from client, converts JSON message body to
objects and handles authentication of the request before
transferring it to the business layer. It also handles
presenting the views to the client.

2. Business Layer: This layer encompasses the business
logic of the application. It performs the validation and
authorization of the request and has service classes.
These service classes then interact with the data access
layer/ persistence layer.

3. Persistence Layer: This layer converts the objects in the
application to database rows/objects using the storage
logic.

4. Database Layer: This is the layer in which data required
by the application is stored and on which CRUD (create,
read, update, delete) operations are executed.

Fig -2: Architecture flow of spring boot Applications

Spring boot uses all the features of Spring like Spring MVC,
Spring Data and JPA. A generic Spring Boot application
consists of a controller which serves the clients HTTP
request. This controller then interacts with the service layer
which processes the request to modify the model and the
database using the JPA repository through dependency
injection. A view page is returned to the user if no error
occurred. The architecture of a typical Spring boot
application is presented in Fig 2.

Spring Framework 5 supports reactive application
development by using Reactor internally and has tools for
building reactive REST servers. The annotations can be used
to implement the required configuration along with
controller methods which handle HTTP requests with
reactive components. It supports reactive streams for
managing backpressure on asynchronous components.
Spring 5 builds exposes APIs which can be implemented
using libraries such RxJava or Reactor.

The webserver can be Tomcat, Jetty for Spring MVC or Netty
for Webflux. Reactive streams are supported by Java in the
form of java.util.concurrent.Flow.

4. Reactive programming

Reactive programming deals with developing non-blocking
and event-driven applications built around asynchronous
data streams [1]. This helps to scale them easily.
Backpressure is an important concept of reactive systems
which provides a mechanism so that producers will not
overwhelm the consumers. This leads to developing the
applications in a declarative style. Java 8 provides a similar
solution called CompletableFuture to compose follow-up
actions using lambdas.

In reactive programming, events, notification and HTTP
requests are represented as data streams and applications
are built to handle such streams making them asynchronous
by nature. There are two types of data streams namely Hot
and Cold streams.

Cold streams are lazy and start flowing only when a
consumer demands them. They represent asynchronous
actions which exhibit lazy execution upon need. Cold streams
maybe asynchronous actions having lazy execution, lazy file
download where data is not pulled until someone requires it.
This stream is sent to the subscriber who demands it and not
to all subscribers. Hot streams are active and are sent to all
subscribers like a continuous stream when the data is
generated. When a subscriber registers to the stream, it
automatically receives the next measure. Understanding the
nature of the stream is crucial to develop the systems
consuming it.

Using reactive programming in certain components does not
guarantee reactive systems. Each node must implement
functions which are non-blocking and exhibit task-based
concurrency. Reactive systems are essentially responsive
distributed systems. Properties of a reactive system are,

1. A reactive application processes a request within a
definite time period.

2. Reactive system components must interact with
each other using asynchronous message passing.

3. Reactive systems must be resilient and must be
responsive even in case of failures such as crash,
timeout and 500 errors.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3836

4. Reactive systems must be easily scalable to handle
varying load with minimal resources.

Reactive programming helps creating robust and highly
extendable applications. It makes the system more
maintainable when processing data sent as streams in regular
intervals.

5. Spring Webflux

Spring framework originally was developed to support
Servlets through Spring Web MVC. Spring MVC uses servlet
stack to process requests and produce response
synchronously. Later Spring 5 introduced Spring Webflux for
developing non-blocking asynchronous applications and to
support reactive streams which run on Netty and Servlet 3
containers. These containers deliver high performance for
reactive applications. Spring MVC and Spring Webflux are
developed over their source modules and applications can be
built using either or both. Such as having Web Clients
implemented using Webflux and controllers through MVC.

Spring Webflux improves concurrency with small number of
threads and minimal hardware because of asynchronous
execution. It provides a common API using which
applications can be run on any non-blocking runtime. Netty
servers support concurrency through async and non-
blocking functionalities.

Lambda expressions introduced in Java 8 enables use of
functional APIs which are crucial for developing non-
blocking and asynchronous applications. Spring Webflux
makes excellent use of this feature to offer functional
endpoints along with annotated controllers.

Another mechanism with reactive programming is non-
blocking back pressure. In imperative programming
synchronous calls act as back pressure and make the client
wait for the response. Non-blocking programs require
controlling the rate of events being delivered by producer so
that the consumer is not overwhelmed. The consumer needs
the control to alter rate at which he chooses to receive the
data stream.

Spring Webflux uses Reactor as the library to achieve
reactive programming by using types such as Mono and Flux
which accommodate (0..1) and (0..N) data streams. Reactor
supports non-blocking backpressure by default. Webflux
provides HTTP abstractions, WebHandler API to support
non-blocking contracts and adapters for reactive streams.

Spring WebFlux helps application development through:

1. Use of Annotated Controllers which are similar in their
use in Spring MVC. Spring Webflux also supports the
@ResuestBody parameters which are reactive. Reactive
return types are supported by both Spring MVC and
Spring Webflux.

2. Use of Functional Endpoints which is achieved through
the development of applications using lambdas.
Lambdas act as lightweight modules which help to

transform or process the requests. This provides a
declarative style of defining how to process requests as
opposed to annotation-based controllers in which the
application is in charge of request handling.

Both Spring MVC and Webflux can be used together to
expand the range of options. Both these frameworks
complement each other and provide solutions to the short
comings from each side. Fig. 3 shows the similarities and
distinction between these two frameworks.

Fig -3: Spring MVC and Spring Webflux features and
similarities

6. Kotlin for server-side application development
and coroutines support

Kotlin serves as an excellent option to develop server-side
applications. Kotlin provides a concise and expressive way to
write code. It also allows the application being developed to
seamlessly integrate with existing Java technologies. Some of
the advantages using Kotlin are:

1. Kotlin is a highly concise and expressive language. It
provides type safe builders and useful abstractions.
Kotlin is very easy to learn for Java developers.

2. Kotlin is supported by many of the popular IDEs and some
of them support for Spring framework and other
frameworks.

3. Kotlin provides support for coroutines which helps
developing highly scalable server-side applications.

4. Kotlin is completely interoperable with Java and Java-
based frameworks. This provides the developer to use
the framework of choice together with the benefits
provided by Kotlin.

Spring 5.0 supports application development using Kotlin
and makes effective use of Kotlin’s features stated above to
provide concise APIs. Kotlin provides Coroutine support
which enables to develop asynchronous applications [4].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3837

A coroutine is a simple light weight component which can be
run concurrently with other program components. They can
easily switch contexts and share the underlying hardware
effectively.

Asynchronous applications are crucial to provide seamless
user experience and achieve high scalability. Coroutines also
provides additional features such as concurrency, actors and
many more.

This makes Kotlin to seamlessly integrate with frameworks
such Spring Webflux and develop reactive applications. The
unnecessary verbose as in case of java can be completely
avoided using Kotlin.

7. CONCLUSIONS

The increase in demand for reactive systems, applications
must be developed to handle asynchronous requests and
responses. However certain part of the systems can be
developed efficiently only when they are synchronous.
Spring framework 5.0 provides an excellent solution to use
both imperative (Spring MVC) and reactive (Spring Webflux)
paradigms in the same application.

Spring boot 2.0 provides many default configurations and
makes the development of the application faster and easier.
Kotlin provides inbuilt support for asynchronous
programming using coroutines. Systems with reactive
components can be developed effectively using these
technologies.

This paper presents a view as to how the language support
for coroutines presented by Kotlin, advantages of reactive
programming using Webflux and ease of annotated
controllers can be combined effectively to develop highly
scalable and robust enterprise application.

REFERENCES

[1] K. Siva Prasad Reddy, "Reactive Programming Using

Spring WebFlux", Beginning Spring Boot 2, pp. 159-
132 DOI: 10.1007/978-1-4842-2931-6_12

[2] Joseph B. Ottinger, Andrew Lombardi, "Spring Boot",
Beginning Spring 5, DOI: 10.1007/978-1-4842-4486-9_7

[3] https://spring.io/reactive

[4] https://kotlinlang.org/docs/reference/coroutines-
overview.html

