Implementation of Plant Leaf Diseases Detection and Classification using Image Processing Techniques: A Review

Chandan Kumar Singh¹, Dr. Sandeep Patil²

¹(M.Tech, Student) Department of Electronics & Telecommunication Engineering, Shri Shankaracharya Group of Institutions SSTC Junwani, Bhilai (CG). ²Associate Professor, Department of Electronics & Telecommunication Engineering, Shri Shankaracharya Group of

²Associate Professor, Department of Electronics & Telecommunication Engineering, Shri Shankaracharya Group of Institutions SSTC Junwani, Bhilai (CG). ***

ABSTRACT: India is a developing country and about 70% of the Indian population depends on agriculture sector. In tradition method framer can supervised the plant leaf disease through the naked eye observation, which is more time consuming, expensive and less reliable method. So, in order to increase the efficiency to detect the plant leaf disease at the early stage automatic detection technique is used to recognize this disease which they appear on plant leaves. Plant leaf disease detection and classification includes the Image acquisition, Image preprocessing, image segmentation, feature extraction and classification. This paper review the survey of various plant leaf disease and different technique is used to detect these diseases.

Keywords: Disease Leaf, Gray level Co-occurrence matrix, Grayscale Conversion, Principal Component Analysis, Support Vector Machine.

1. INTRODUCTION

Agriculture sector plays a role in Indian economy and it contributes 6.1% in India GDP. Plant disease related to cereal crop is blast of paddy, False smut, Sheath blight, Stem Rust, Strip rust, rust of maize and head smust of maize. Early detection of disease lead to less loss and preventative measure will be taken. Cash crop plays a dominant role in Industry and Agriculture economy. In India 6 million framers get directly live hood from agriculture sector.

Various image processing concepts are image filtering, segmentation, image feature extraction have emerged to detect the plant leaf disease. For classifier SVM, Decision tree, CNN and ANN can be used for classification. Depending on the applications, many systems have been proposed to solve or at least to reduce the problems, by making the use of image processing, pattern recognition and some automatic classification tools. In the next section paper tries to present the proposed system in meaningful way.

2. LITERATURE REVIEW

Kishori Patil et al. [1] Leaf Disease Detection using Deep Learning Algorithm. CNN algorithm includes two layers .First is the extraction layer of the feature and other layer is feature extraction layer. CNN method gives the accuracy up to 86.26 for recognition of plant leaf disease.

Simranjeet kaur et al. [2] Image Processing and Classification, A Method for Plant Disease Detection. Author applied Gray-Level Co-Occurrence Matrix (GLCM) for feature analysis and KNN classifier is used for detection. This system gave the accuracy up to 95% for recognition.

Khaing War Htun et al. [3] identified the development of paddy diseased leaf classification system using modified color conversion.143 no's of data samples are used for classification and identification of diseased paddy leaf. This system is applicable for only four diseases namely leaf blight, brown spot, leaf blast and leaf streak. The paddy diseases can be detected and classified efficiently using statistical, color and texture features based on SVM.

Saradhambal.G et al. [4] Proposed an approach for Plant disease detection and its solution using image classification. Infected area of leaves predication is carried out by K-means clustering algorithm and Otsu's classifier. Shape and texture were extracted in the proposed work. Extraction work includes area, color axis length, eccentricity; solidity and perimeter whereas the texture oriented features were contrast, correlation, energy, homogeneity and mean. Neural network based classifier was used by the researcher.

Shanwen Zhang et al. [5] Plant disease leaf image segmentation based on super pixel clustering and EM algorithm. Super pixel clustering is used which is comparing with neighboring pixel with some feature with respect to brightness, texture and color are grouped into homogenous region. EM algorithm is used for image segmentation. **r** Volume: 07 Issue: 04 | Apr 2020

www.irjet.net

Vijai Singh et al. [6] Detection of plant leaf diseases using image segmentation and soft computing techniques. Author proposed the image recognition and segmentation process for plant leaf disease and for classification minimum distance criterion and SVM is used. A MATLAB to perform the experiment. Data sample is taken from rose leaf, lemon leaf, banana leaf and beans leaf.Co-occurrence features is used for mapping the R,G,B components of the input image to the threshold images. The Co-occurrence features of the leaves are extracted and compared with the corresponding features stored in the feature library.

Rajleen Kaur et al. [7] An Enhancement in classifier Support Vector Machine to improve Plant disease detection. Two data sets contain training dataset and train data sets which are implemented by Support Vector machine. Here training image is compared with trained image. After that image masking is done which will find healthy image, diseased image and histogram of the images. Finally diseased and healthy image area is compared and finally the result is shown in percentage of fraction of disease with name of disease is mentioned.

Kiran R. Gavhale et al. [8] An Overview of the Research on Plant Leaves Disease detection using Image Processing Techniques. Author proposed five steps for detection and classification of plant leaf viz. Image Acquisition, Image Preprocessing, Image Segmentation, Feature extraction, classification and diagnosis of diseases. K-means clustering is used for feature extraction and for classification SVM technique is implemented.

Sanjay B. Dhaygude et al. [9] describes the agricultural plant leaf diseases detection using image processing. Four steps are developed for scheme processing, first step is color transformation structure RGB is converted into HSV. In second step, removing and masking of green pixels with pre-calculated threshold level. Third step, Patch size of 32*32 segmentation is obtained by useful segments and these segments are used for texture analysis by color co-occurrence matrix. Fourth step, texture parameters are compared to texture parameters of normal leaf.

Anand.H.Kulkarni et al. [10] Gabor filter and ANN classifier is applied on plant leaf to detect the diseases. Images is first captured and then data base is prepared .Gabor filter is applied for feature extraction and recognition is done in two steps raining and for classification ANN classifier is applied and gives us the recognition rate up to 91%.

Authors	Year	Description	Outcomes
Kishori	2020	Convolution	The proposed
Patil et		Neural	system gives
al.		network (CNN)	the accuracy
		is applied.	up to 86.26%.
Simranjeet	2019	Plant leaf	The
kaur et		Image	accurateness
al.		detection	of accessible
		technique is	method is 95
		based on	%.
		segmentation,	
		feature	
		extraction and	
		Segmentation.	
		GLCM method	
		is applied	
		feature	
		extraction and	
		KNN classifier	
		is used for	
171 .	0010	detection.	m
Khaing	2018	The author is	The
war		used the	classification
Hun et		Support vector	rate of the
al.		algorithm	proposed system
		which has five	achieved
		kernel function	90% Feature
		i e Linear	extraction
		auadratic	includes
		radial basis	Statistical
		function	feature
		sigmoid and	extraction.
		polynomial.	color feature
		This method	extraction and
		gives us the	texture feature
		grayscale	extraction.
		conversion.	
		Classification	
		was done on	
		the basis of	
		statistical,	
		color and	
		texture	
		features based	
		on SVM.	
Saradha	2018	Author	The infected
mbal.G et		proposed a	area of leaf is
al.		system for	segmented and

automatic

plant

disease

analyzed. The

of

images

International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395-0056 p-ISSN: 2395-0072

IRJET Volume: 07 Issue: 04 | Apr 2020

www.irjet.net

			1.	C' 1 /		1	· · · · ·
		detection. In	diseases are	Singn et		search	included in
		this system	identified by	al.		capabilities of	texture are
		predication of	application.			genetic	Local
		infected area of	Efficient			algorithm are	homogeneity,
		the leaves by k-	system in			used to set the	contrast,
		means	terms of			unlabeled	cluster shade,
		clustering	reducing the			points in N-	energy and
		algorithm and	clustering time			dimension into	cluster
		Otsu's	and area of			K cluster and	prominence.
		classifier.	infected			for feature	The minimum
			region. Feature			extraction	distance
			extraction			color co-	criterion with
			technique			occurrence	K-means
			helps to			method are	clustering gave
			extract the			used. Two	an accuracy of
			infected leaf			methods are	86.54% and
			and also to			used for	with SVM the
			classify the			Minimum	accuracy was
			nlant diseases			distance	95 71% By
Shanwen	2017	Simple linear	The color			criterion i.e. K-	using the
Zhang of	2017	itorativo	imago is firstly			means	Genetic
al		clustoring	divided into			clustering and	algorithm
al.		(SLIC) in	covoral cupor			Conotic	algorithin
		(SLIC) IS	several super			algorithm	Minimum
		widely applied	pixels to			algoritinn.	distance
		to super pixel	improve the				distance
		clustering due	initiai				criterion
		to its simplicity	estimation and				increased the
		and	possibly				accuracy to
		practicality.	reduce the		0017		93.63%
		SLIC performs	unlikely	Rajleen	2015	Author is used	Hue and
		a 5-D space	segmentation,	Kuar et		two types of	Saturation part
		(L*a*b*x y)	and then,	al.		recognition	of image is also
		clustering by	segmentation			that are	separated. And
		K-means	is carried out			statistical and	finally infected
		guideline,	by EM			structural	part and
		where L*a*b*	algorithm. The			recognition.	infected area
		are	proposed			The statistical	% and name of
		components of	method is			recognition of	disease are
		CIELAB color	appropriate			patterns totally	acquired
		space and x	for dealing			depends upon	proposed
		and y are the	with plant			the pattern	methodology.
		pixel	disease leaf			characteristics	Main aim of
		coordinates in	image			which are also	this work is to
		the image. EM	segmentation			statistical in	provide the
		algorithm	and has certain			nature.	advancement
		(expectation	superiority in			Structural	and
		and	the field of			recognition of	enhancement
		maximization)	plant disease			characterizes	in computing
		is good	detection			depend on the	classifiers of
		approach for				interrelationsh	neural
		image				in among the	network
		segmentation				structure	approach and
Vijai	2016	For clustering	Features			which contain	provide better
, 1341	2010	i or crustering,	i cutui co				Provide Detter

Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3058

International Research Journal of Engineering and Technology (IRJET)

Volume: 07 Issue: 04 | Apr 2020

		features	results
Kiran R.	2014	Image	Disease
Gavhale		detection and	detection
et al.		classifications	technique
		is completed in	analyses the
		five steps viz.	healthy and
		Image	disease plant
		Acquisition.	leaves.
		Image	
		Preprocessing,	
		Image	
		Segmentation,	
		Feature	
		extraction,	
		classification	
		and diagnosis	
		of diseases.	
		Technique	
		used for	
		detection of	
		plant leaf are	
		BPNN, K-	
		means	
		clustering and	
		SGDN. For	
		classification of	
		plant leaf	
		tochniquo ic	
		implemented	
Sanjay B	2013	Author used	Work will
Dhavgude	2015	the algorithm	hased on focus
et al.		which is	the developing
		based on	algorithm
		Vision-based	and NN's in
		detection	order to
		algorithm	increase the
		with masking	recognition
		of the green	rate of
		pixels and	classification
		color co-	process.
		occurrence	
		method.	
Anand.H.	2012	Artificial	Gabor filter is
Kulkarni		neural network	used for
et al.		and Gabor	feature
		filter is used	extraction and
		for	ANN classifier
		implementatio	is used for
		n. Images of	classification
		leat are	which gives
		captured first	the recognition
		and then data	rate up to 91%

base is	
prepared. For	
detection of	
images first	
image is	
segmented and	
then Gabor	
filter is applied	
for feature	
extraction.	
Recognition is	
done by two	
steps raining	
and	
classification is	
done by ANN.	

3. CONCLUSION

This paper reviews the different techniques of plant leaf disease detection using image processing that have been used by a numbers of researchers in the past few years. The major technique is GLCM and KNN classifier, Convolution Neural Network, SVM, K-means clustering algorithm and Otsu's classifier, Super pixel and EM algorithm, K-means clustering and Genetic algorithm, Neural Network, Vision based detection algorithm, Gabor filter and ANN classifier.

4. REFERENCES

[1] Kishori Patil, Santosh Chobe," Leaf Disease Detection using Deep Learning Algorithm," International Journal of Engineering and Advanced Technology (IJEAT)", ISSN: 2249 – 8958, Volume-9 Issue-3, February 2020, pp.3172-3175.

[2]Simranjeet kaur, Geetanjali Babbar, Gagandeep," Image Processing and Classification, A Method for Plant Disease Detection", International Journal of Innovative Technology and Exploring Engineering (IJITEE), ISSN: 2278-3075, Volume-8, Issue-9S, July 2019, pp. 869-871.

[3] Khaing war Htun & Chit Su Htwe"Development of paddy diseased Leaf classification system using modified color conversion".iJournals: International Journal of software & Hardware Research in Engineering,ISSN-2347-4890,Volume 6 Issue 8 August,2018,pp 24-32.

[4]Saradhambal.G, Dhivya.R, Latha.S, R.Rajesh," Plant disease detection and its solution using image classification", International Journal of Pure and Applied Mathematics, Volume 119 No. 14, 2018, pp. 879-884.

e-ISSN: 2395-0056 p-ISSN: 2395-0072 M International Research Journal of Engineering and Technology (IRJET)

[5]Shanwen Zhang, Zhuhong You, Xiaowei Wu" Plant disease leaf image segmentation based on super pixel clustering and EM algorithm" Springer, 2017.

[6]Vijai Singh, A.K.Misra,"Detection of plant leaf diseases using image segmentation and soft computing Techniques," Information processing In Agriculture 4(2017)41-49, science direct.

[7]Rajleen Kaur, Sandeep Singh Kang,"An Enhancement in classifier Support Vector Machine to improve Plant disease detection", IEEE 3rd International Conference on MOOCs, Innovation and Technology in Education (MITE), 2015,pp. 135-140.

[8] Kiran R. Gavhale, Ujwalla Gawande," An Overview of the Research on Plant Leaves Disease detection using Image Processing Techniques", IOSR Journal of Computer Engineering (IOSR-JCE), e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 1, Ver. V (Jan. 2014), PP 10-16

[9]SanjayB.Dhaygude,Nitin P. Kumbhar"Agricultural plant leaf diseases detection using image processing "International Journal of Advanced Research in Electrical ,Electronics and Instrumental Engineering Vol.2,Issue 1,January 2013,pp.559-602. [10]Anand.H.Kulkarni, Ashwin Patil R. K," Applying image processing technique to detect plant diseases", International Journal of Modern Engineering Research (IJMER), Vol.2, Issue.5, Sep-Oct. 2012 pp-3661-3664