IRIET

SESMIC ANALYSIS OF ROOFTOP MOUNTED TELECOMMUNICATION TOWER

Yogesh B. Zala¹, Ashutosh D. Patel²

¹Post graduate in Structural Engineering, Sankalchand Patel University, Visnagar ²Assistant Professor in Structural Engineering, Sankalchand Patel University, Visnagar _____***_____

Abstract - Due to the boom in the telecommunication business, number of buildings carrying a roof top tower has been increased rapidly. Most of the building were not originally designed to carry a roof top tower, but later converted to carry roof top towers due to the changed requirements. In the present work an attempt has been made to study the behavior of buildings with roof top tower in the event of an Earth Quake using STAAD pro. A typical commercial building is considered for the analysis. Four towers with height 15m and 30m is considered for the study.In this Paper We have presented the results of (G+5) commercial buildings of various plot area with telecommunication tower mounted on its rooftop.

Key Words: Commercial Building, Telecommunication Tower, Staad Pro.

I. INTRODUCTION

The Indian telecom service business is the fastest growing one in the world, with over seven million mobile subscribers being added every month. This expanding base possesses challenges to mobile operators in terms of augmenting and upgrading infrastructure to maintain to quality of services. A rapidly increasing subscriber base and a more stringent spectrum allocating regime may create a higher requirement of tower sites for operators to accommodate more subscribers. Hence it became a costly and tedious task to identify sufficient land for construction of towers. This led to the extensive use of the roof top of multistoried buildings for installing communication towers. However many of these buildings were not designed to take care of tower load, particularly under earthquake Conditions.

II. SELECTION OF BUILDING

The floor area, the number of floors and the shape of the building on which the roof top tower is installed varies from building to building. Based on the survey of the buildings where roof top towers were installed, it has been found that most of the towers are installed on commercial buildings and their structural dimensions

vary within arrange. Hence a typical commercial building frame with along span and shorts pan floor structure has been considered for the analysis. Figure shows the graphical representation of the Building.

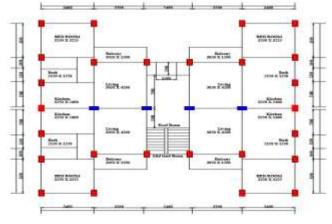


Fig -1: Layout Plan

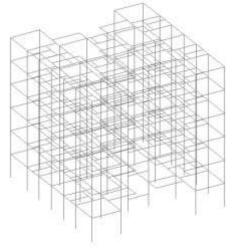
III. PLAN AND SPECIFICATION

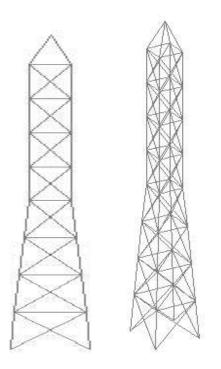
A. Building Specification

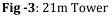
Table -	1
---------	---

Type of building	Commercial Building
Height of the building	21m
Number of stories	(G+5)
Floor-to-Floor height	3m
Materials	M28 for beams M30 for columns Fe-415 for steel
Column size	600mm × 360mm
Beam size	360mm × 300mm
Depth of Slab	150mm

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395-0056Volume: 07 Issue: 04 | Apr 2020www.irjet.netp-ISSN: 2395-0072




Fig -2: Building Model


B. Tower Specification

In general, height of rooftop tower ranges from 9m to 30m in order to have wide range, tower with height 21m Considered for analysis. This tower is four legged steel lattice tower with cross bracings. Tower tower considered for present study is shown in figure

Гable	-2
-------	----

Height of tower	15m and 20m
Location	Centrally side located on rooftop
Beams	Rectangular-section

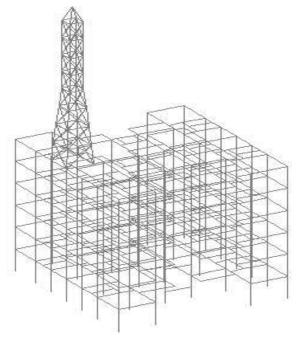


Fig -4: Building with Tower

IV. TOWER LOACATION

For these analyses is of buildings with towers on roof top, bureau of Indian standards recommends to lump the mass of towers on roof top. However it is not clear whether this approach will be giving the correct assessment on the building behavior for tall towers. So it has been proposed to carry out seismic analysis of the building in two ways. 1. By lumping the tower mass at roof level 2. By considering the full tower.

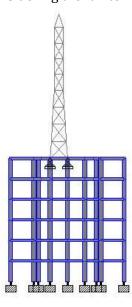


Fig -5: Assigning property

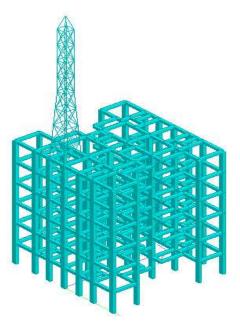


Fig -6: Render view Of Model

V. LOAD AND LOAD COMBINATION

Gravity loads include dead loads and live loads. The dead loads include the permanent loads of the structure and equipment and other fixtures that are not likely to vary during the service life of the structure. Live loads include the variable loads due to occupants and appliances.

Wind load and seismic load calculation is done as per provisions given in Indian Standard Specification (IS: 875 (Part 3) -1987 (Reaffirmed 2003), IS1893 (Part 1): 2002) Wind load is calculated by the basic wind speed of the area and is modified to include geometric, topographic and functional parameters. For Seismic load calculation, the building is considered to be located in zone three of the four zones in India.

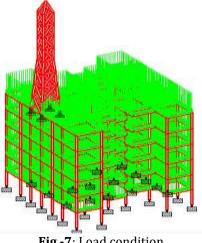


Fig -7: Load condition

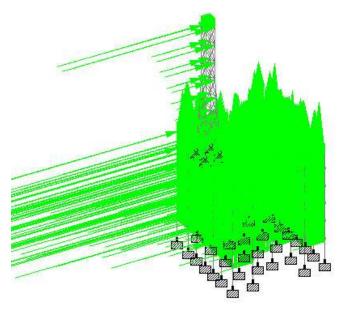


Fig -8: Load Combination

VI. RCC DESIGN

AAD SPACE																	- 1	PAGE	S NO	ę.	
	BEI	A M	N (0.		9	D	E	s	I	G	N	R	E	s	σ	Ŀ	T 2	3		
M28					Fe415	(Ma	in)								Fe	41	15	(Se	ec.)		
LENGTH:	2150.0	TETE			TZF:	30	0.0			Y		260	0				100	790	- 25	:0:	

SECTION	FL	EXURE (N	laxn. Saggi	ng/Eoggi	ing moment:	3) [SHEAR	
(in nn)	ļ.	P	MZ	MX	Load Case	I	ΥY	MX Lo	ad Case
0.0	U.	0.00	12.93	0.25	5 1	L	57.64	2.23	7
	1	0.00	-49.79	1.48	3 13	1			
179.2	J.	0.00	11.88	0.23	5 1		54.98	2.23	7
	1	0.00	-40.44	1.48	8 13	1			
358.3	I.	0.00	10.83	0.23	5 1	1	51.78	2.23	7
	1	0.00	-31,50	1.48	3 13	1			
537.5	J.	0.00	9.77	0.23	5 1	1	47.68	2.23	7
	1	0.00	-23.05	1.48	3 13	1			
716.7	I.	0.00	9.67	1.54	8	1	44.54	2.23	7
	1	0.00	-16.50	0.75	9 9	1			
895.8	J.	0.00	11.99	1.54	8	1	40.01	2.23	7
	1	0.00	-11.01	0.79	9 9	1			
1075.0	J.	0.00	14.54	2.03	9 12	1	35.09	2.23	7
	1	0.00	-5.93	0.75	9 9	1			
1254.2	1	0.00	17.90	2.05	9 12	I.	29.78	2.23	7

Fig -9: Design Load Summary

T Volume: 07 Issue: 04 | Apr 2020

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

SUMMARY OF REINF. AREA (Sq.mm)

SECTION (in man)		109				BOTICM Reqd./Provided reinf.					STIRRUPS (2 legged)		
		Reqd./Provided reinf.											
0.0	t	467.65/	471.24(6-10i	11	202.77/	235.62(3-10i	11	Bí	8 140 m		
179.2	l	377.51/	392.70(5-10i	11	202.77/	235,62(3-10i	11	Bí	8 140 m		
358.3	ĺ	293.84/	314.16(4-10i	П	202.77/	235.62(3-10i	11	Bí	8 140 m		
537.5	i	216.86/	235.62(3-10i	11	202.77/	235,62(3-10i	11	Bí	8 140 m		
716.7	l	202.77/	235.621	3-10i	11	202.77/	235.62(3-10i	11	Bí	8 140 m		
895.8	ĺ.	202.77/	235.62(3-10i	11	202.77/	235,62(3-10i)[Bí	8 140 m		
1075.0	t	202.77/	235.621	3-10i	П	202.77/	235.62(3-10i	11	Bí	8 140 m		
1254.2	i	202.77/	235.62(3-10i	11	202.77/	235,62(3-10i	11	Bí	8 140 m		
1433.3	ĺ	202.77/	235.62(3-10i	П	202.77/	235.62	3-10i	11	Bí	8 140 m		
1612.5	i	202.77/	235.621	3-10i	11	223.58/	235,62(3-10i	11	Bí	8 140 m		
1791.7	l	202.77/	235.62(3-10i	П	249.34/	314.16(4-10i	11	Bí	8 140 m		
1970.8	i	202.77/	235.62(3-10i	11	266.62/	314.16{	4-10i	11	8í	0 140 m		
2150.0	t	202.77/	235.62(3-10i	П	275.93/	314.16(4-10i	11	Bí	8 140 m		

Fig -10: Reinf. Area

AND ADDRESS INCOME. (March	- 22	-16,13	
DESIGN AXIAL PORCE (Pu)	÷.	-16.13	
		About 2	About Y
INITIAL MOMENTS		18.08	1.91
MOMENTS DUE TO MINIMUM EDC.	*	0.32	0.42
SLENDERNESS RATIOS		-	(m).
HOMENTS DUE TO SLENDERNESS EFFECT	÷.		
NOMENT REDUCTION FACTORS	-		+
ADDITION MOMENTS (Mag and May)	÷.	12	
TOTAL DESIGN MOMENTS		18.08	1.91
REQD. STEEL AREA : 1728.00 B	q.mm.		
REQD. CONCRETE AREA: 214272.02 B			
MAIN REINFORCEMENT : Provide 16 - (Equally dist:			1009.56 8q.mm.)
TIE REINFORCEMENT : Provide 6 mm	dia.	rectangular	time # 190 mm c/c

Puz : 3430.51 Muzl : 89.74 Muyl : 158.68

Fig -11: Design Forces

		X 064 personana	
		FLATES INSURED ADOVE)	
		strate or colours to your, conner, up yours or	
		EFREMENTS RELEASED IN THE ASSOCIED QUARTERS.	CORES ADORE
TOTAL VOLUME	or consent -	046-0 07.MEDBR	
	SAU 112	NELDET.	
	(in m)	(in New)	
	1	54510	
	10	18804	
	12	011110	
	16	5501	
	33	4575	
	+++ IOUTs	194608	
(O. DISASTER 2			
461. CODE INDIAN			
442. DECE CODE MENS	100 00 101		

VII. STEEL DESIGN

1298823	TABLS	RESULT/ FX	CRITICAL COND/	BATIO/ MZ	LOCATION
810 #	¢ 1,252		(ATHC MECTA)	C1.457.0	
		98.00	18-7-1-1(2)	0.778	
		15,18 C	-0.04	-0.05	0.75
811 #	T 1252		(AISC RECEI		
		8400	18-7-1.1(A)	0,004	11
		35.20 0	0.04	-0.04	0.75
812 3	T 3.252	0.8	(AINC MECT2)	ciNull 3	
		FASS	15-7.1.1(A)	0,778	
		15.19 0	0.04	-0.03	0.75
813 3	\$ 1,252	0.8	(AISC RECTI	CONFUR (
		1800	18-7.1.1(2)	0.004	10
		18.20 0	-0.04	-0.04	0.75
814 0			(AINC DECT)	CINERY	
		7855	15-7-1-1(8)	0,911	2
		39,73 0	-0.06	-0.04	8.01
015 #	r 1403	54	(AINC BECTI	CINUIT 1	
		2805	10-7-1-1 (A)	0.913	
		39.78 =	0.04	-0.04	8,01
014 0	r 1403	54	LALIC RECTI	ONUT I	
		FASS	10-7-1-1(A)	0,913	
		39.73 #	-0.04	-0.04	3.01
817.0	1403	54	TAIDC SECTI		
2000	 development 	7885	15-7-1-1(8)	0.911	
		39.78 0	0.06	-0.04	8.01
010.0	T: DAGA		(ALBC SECTI		
100.0	50 (Based)	FAGS	18-7-1.1(A)	0.994	

Fig -13: Steel Design

्य	PROFILE	LENGTH (METE)	WEIGHT (KN)
81	140355	4.50	0.502	
st	140405	1.50	0.175	
57	L20202	169.19	4.059	
a'r	L25253	28.47	1.277	
37	1.30304	4.42	0.315	
52	1.20203	31.30	1.112	
8T	125203	21.40	0.860	
37	135305	1.50	0.144	
ST.	130305	0.75	0.066	
87	L40354	0.75	0.067	
57	135354	3.00	0.251	
ST	130254	3.00	0.195	
87	P30303	1.50	0,081	
52	130253	1.50	0.074	

Fig -14: Steel Take off

VII. CONCLUSIONS

STREL TAKE-OFF

It is been observed that the loads on RCC structure are not nominal and cannot be withstand by the existing member and need proper design check of the RCC structural member before installation of telecommunication tower on the existing structure.

Installing of a tower at roof top makes a building vulnerable to earthquake, as it calls for additional requirement of steel in both columns and beams

Considering the importance of the additional external loads due to telecommunication tower on a building structure, it is been concluded that the design of the columns get effected tremendously hence the telecommunication tower should not be installed on the building which are not designed for such loads. There is a reduction in the total steel requirement in both columns and beams, if tower is placed in the short span of the building.

Further, rooftop towers cannot be based on analytical results obtained for a similar configuration situated at ground level, since the member forces in the tower mounted on rooftop are more than the member forces of tower installed at ground level.

REFERENCES

[1] Rajasekharan, J. & Vijaya, S. (2014) Analysis of Telecommunication Tower Subjected to Seismic & Wind loading. International Journal of Advancement in Engineering Technology, Management and applied science.

[2] Wang Yiqun and A N Guotion, 'Earthquake Analysis for the system of RC buildings with steel towers', Transactions of Tianjin University, ISSN 1006-4982 pp376-380,Vol.11 No. 5 Oct. 2005

[2] Amiri, G. & Boostan, A. (2002) Dynamic Response of Antenna-Supporting Structures. 4th Structural Specialty Conference of the Canadian Society for Civil Engineering. p.1-9.

[3] Nitin Bhosale, Prabhat Kumar and Pandey.A.D (2012): "Influence of Host Structure Characteristics on Response of Rooftop Telecommunication Towers", International Journal of Civil and Structural Engineering Volume 2, No 3, February 2012, ISSN 0976 – 4399.

[4] Da Silva, J.G.S., Da S. Vellasco, P.C.G., De Andrade, S.A.L. & De Oliveir, M.I.R. (2005). Structural assessment of current steel design models for transmission and telecommunication towers. Journal of Constructional Steel Research.

[5] Richa Bhatt, A.D.Pandey and Vipul Prakash (2013): "Influence of Modeling in the Response of Steel Lattice Mobile Tower under Wind Loading", International Journal of Scientific Engineering and Technology, Volume 2 Issue 3, April 2013, ISSN: 2277-1581.