Skolem Minkowski-4 Mean Labeling of Graphs

M.Kaaviya Shree ${ }^{1}$, K.Sharmilaa ${ }^{2}$
${ }^{1}$ II M.Sc Mathematics, Department of Mathematics (PG), PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, India
${ }^{2}$ Assistant Professor, Department of Mathematics (PG), PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, India

Abstract

Let $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ be an simple and undirected graph with \mathbf{p} vertices and \mathbf{q} edges. Let us define a function $\phi: \mathbf{V}(\mathbf{G}) \rightarrow\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots, \mathbf{p}\}$ is called Skolem Minkowski-4 Mean Labeling of a graph G if we could able to label the vertices $\mathbf{x} \in \mathbf{V}$ with distinct elements from $\mathbf{1 , 2}, \ldots, \mathbf{p}$ such that it induces an edge labeling $\phi^{*}: \mathbf{E}(\mathbf{G}) \rightarrow\{\mathbf{2}, \mathbf{3}, \ldots, \mathbf{p}\}$ defined as, $\phi^{*}(\mathbf{e}=\mathbf{u v})=\left\lceil\left(\frac{\Phi(\mathbf{u})^{4}+\phi(\mathbf{v})^{4}}{2}\right)^{\frac{1}{4}}\right\rceil$, is distinct for all edges $\mathbf{e}=\mathbf{u v} \in \mathbf{E}$. (i,e.) It indicates that, distinct vertex labeling induces a distinct edge labeling on the graph. The graph which admits Skolem Minkowski-4 Mean Labeling is called a Skolem Minkowski-4 Mean Graph. In this paper, we have investigated the Skolem Minkowski-4 Mean Labeling of some standard graphs like Path, Comb, Caterpillar, $\mathbf{P}_{\mathbf{n}} \odot \mathbf{K}_{1,2}$, etc.

Key Words: Skolem Minkowski-4 Mean Labeling, Skolem Minkowski-4 Mean Graph, Path, Comb, Caterpillar, $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1,2}$.

1. INTRODUCTION

The graph G we used here are simple, finite and undirected graphs. $\mathrm{V}(\mathrm{G})$ and $\mathrm{E}(\mathrm{G})$ denotes the vertex set and edge set of a graph G. For graph theoretic terminology, we refer to Harary.F [3], Douglas B. West [1] and Gallian.J.A [2]. The concept of Mean Labeling of graphs was introduced by Somasundaram.S and Ponraj.R [5] in 2003. Sandhya.S.S, Somasundaram.S and Anusa.S [7] introduced the concept of Root Square Mean Labeling of graphs in 2014. V.Balaji, D.S.T.Ramesh and A.Subramanian [4] introduced the concept of Skolem Mean Labeling in 2007. On the same lines we define and study Skolem Minkowski-4 Mean Labeling of graphs.

2. BASIC DEFINITIONS

The following definitions are needed for the present study.

A. Definition

A walk in which all the vertices say $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \ldots, \mathrm{u}_{\mathrm{n}}$ are distinct is called a Path. A Path is denoted by P_{n}. The Path P_{n} has n vertices and $n-1$ edges.

B. Definition

The graph attained by attaching a single pendent edge to each vertex of a Path is called Comb. Generally, it has $2 n$ vertices and $2 n-1$ edges.

C. Definition

A tree which yields a Path when its pendant vertices are removed is called a Caterpillar. It has $3 n$ vertices and $3 n-1$ edges.

D. Definition

The $P_{n} \odot K_{1,2}$ is a graph attained by attaching the complete bipartite graph $K_{1,2}$ to each vertex of the path P_{n}. It has $3 n$ vertices and $3 n-1$ edges.

3. MAIN RESULTS

Theorem: 1

Path P_{n} is a Skolem Minkowski-4 Mean graph for every n. Proof:
Let P_{n} be a path $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ of length n. The path P_{n} has n vertices and $n-1$ edges.
Let us define a function $\phi: V(G) \rightarrow\{1,2,3, \ldots, p\}$ by

$$
\phi\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}
$$

Then the induced edge labels are,

$$
\phi^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=\mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n}-1
$$

Then we attain a distinct edge labels.
Therefore, P_{n} is a Skolem Minkowski-4 Mean graph.

Figure 1: P_{8}
Theorem: 2
For every n, $\operatorname{Comb} P_{n} \odot K_{1}$ is a Skolem Minkowski-4 Mean Graph .
Proof:
Let $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$ be a comb attained from a path $P_{n}=u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ by attaching each vertex u_{i} to a
pendent vertex $v_{i}(1 \leq i \leq n)$. The gragh G has $2 n$ vertices and $2 n-1$ edges.
Let us define a function $\phi: V(G) \rightarrow\{1,2,3, \ldots, p\}$ by

$$
\begin{gathered}
\phi\left(u_{i}\right)=\left\{\begin{array}{c}
2 \mathrm{i}, \text { when } \mathrm{i}=1 \\
2 \mathrm{i}-1,2 \leq \mathrm{i} \leq n
\end{array}\right. \\
\phi\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{c}
\mathrm{i}, \text { when } \mathrm{i}=1 \\
2 \mathrm{i}, 2 \leq \mathrm{i} \leq n
\end{array}\right.
\end{gathered}
$$

Then the induced edge labels are,

$$
\begin{gathered}
\phi^{*}\left(u_{i} u_{i+1}\right)=2 i+1,1 \leq i \leq n-1 \\
\phi^{*}\left(u_{i} v_{i}\right)=2 i, 1 \leq i \leq n
\end{gathered}
$$

Then we attain a distinct edge labels.
Therefore, $P_{n} \odot K_{1}$ is a Skolem Minkowski-4 Mean graph.

Theorem: 3

Let G be a graph attained by joining a pendant edges to both sides of each vertex of a path P_{n}. Then G is a Skolem Minkowski-4 Mean graph.

Proof:

Let us consider a graph G which is attained by attaching a pendant edges to both sides of each vertex of a path P_{n}. Let P_{n} be a path $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$. Let u_{i} and w_{i} be the pendant vertices adjacent to $v_{i}(1 \leq i \leq n)$. The gragh G has $3 n$ vertices and $3 n-1$ edges.
Let us define a function $\phi: V(G) \rightarrow\{1,2,3, \ldots, p\}$ by

$$
\begin{gathered}
\phi\left(u_{i}\right)=\left\{\begin{array}{l}
3 i-2, \text { if } i \text { is odd } \\
3 i-1, \text { if } i \text { is even }
\end{array}\right. \\
\phi\left(v_{i}\right)=\left\{\begin{array}{l}
3 i-1, \text { if } i \text { is odd } \\
3 i-2, \text { if } i \text { is even }
\end{array}\right. \\
\phi\left(w_{i}\right)=\{3 i, 1 \leq i \leq n
\end{gathered}
$$

Then the induced edge labels are,

$$
\begin{gathered}
\phi^{*}\left(v_{i} v_{i+1}\right)=3 i+1,1 \leq i \leq n-1 \\
\phi^{*}\left(v_{i} u_{i}\right)=3 i-1,1 \leq i \leq n \\
\phi^{*}\left(v_{i} w_{i}\right)=3 i, 1 \leq i \leq n
\end{gathered}
$$

Then we attain a distinct edge labels.
Therefore, G is a Skolem Minkowski-4 Mean graph.

Figure 3: Caterpillar

Theorem: 4

$P_{n} \odot K_{1,2}$ is a Skolem Minkowski-4 Mean graph, for
every n.

Proof:

Let G be a graph attained by attaching each vertex of P_{n} to the central vertex of the complete bipartite graph $K_{1,2}$. Let P_{n} be a path $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ and v_{i}, w_{i} be the vertices of $K_{1,2}$, which are attached to the vertex u_{i} of P_{n}. The gragh G contains $3 n$ vertices and $3 n-1$ edges.
Let us define a function $\phi: V(G) \rightarrow\{1,2,3, \ldots, p\}$ by

$$
\begin{gathered}
\phi\left(u_{i}\right)=\left\{\begin{array}{c}
i, \text { when } i=1 \\
i+2, \text { when } i=2 \\
3 i-1,3 \leq i \leq n
\end{array}\right. \\
\phi\left(u_{i}\right)=\left\{\begin{array}{c}
2 i, \text { when } i=1 \\
i+3, \text { when } i=2 \\
3 i-2,3 \leq i \leq n
\end{array}\right. \\
\phi\left(w_{i}\right)=\{3 i, 1 \leq i \leq n
\end{gathered}
$$

Then the induced edge labels are,

$$
\begin{gathered}
\phi^{*}\left(u_{i} u_{i+1}\right)=3 i+1,1 \leq i \leq n-1 \\
\phi^{*}\left(u_{i} v_{i}\right)=3 i-1,1 \leq i \leq n \\
\phi^{*}\left(u_{i} w_{i}\right)=3 i, 1 \leq i \leq n
\end{gathered}
$$

Then we attain a distinct edge labels.
Therefore, $P_{n} \odot K_{1,2}$ is a Skolem Minkowski-4 Mean graph.

Figure 4: $P_{4} \bigodot K_{1,2}$

Theorem: 5

Let G be a graph attained by attaching K_{1} at each pendant vertex of a comb. Then G admits a Skolem Minkowski-4

Mean graph.

Proof:

Let G be a graph attained by attaching K_{1} at each pendant vertex of a comb. The gragh G has $3 n$ vertices and $3 n-1$ edges.
Let us define a function $\phi: V(G) \rightarrow\{1,2,3, \ldots, p\}$ by

$$
\begin{gathered}
\phi\left(u_{i}\right)=\left\{\begin{array}{c}
i, \text { when } i=1 \\
i+2, \text { when } \mathrm{i}=2 \\
3 \mathrm{i}-1,3 \leq \mathrm{i} \leq \mathrm{n}
\end{array}\right. \\
\phi\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{c}
2 \mathrm{i}, \text { when } \mathrm{i}=1 \\
\mathrm{i}+3, \text { when } \mathrm{i}=2 \\
3 \mathrm{i}-2,3 \leq \mathrm{i} \leq \mathrm{n}
\end{array}\right. \\
\phi\left(\mathrm{w}_{\mathrm{i}}\right)=\{3 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}
\end{gathered}
$$

Then the induced edge labels are,

$$
\begin{gathered}
\phi^{*}\left(u_{i} u_{i+1}\right)=3 i+1,1 \leq i \leq n-1 \\
\phi^{*}\left(u_{i} v_{i}\right)=3 i-1,1 \leq i \leq n \\
\phi^{*}\left(v_{i} w_{i}\right)=3 i, 1 \leq i \leq n
\end{gathered}
$$

Then we attain a distinct edge labels.
Therefore, G is a Skolem Minkowski-4 Mean graph.

Figure 5: G

4. CONCLUSION

In this paper, we have introduced the notion of Skolem Minkowski-4 Mean Labeling and studied for some standard graphs. Illustrative examples are provided to support our investigation.

REFERENCES

[1] Douglas B.West, Introduction to Graph Theory, Second Edition, PHI Learning Private Limited (2009).
[2] Gallian.J.A, A Dynamic Survey of Graph Labeling, The Electronic Journal of combinatorics(2013).
[3] Harary.F, Graph Theory, Narosa publishing House, New Delhi.
[4] Balaji.V, Ramesh.D.S.T and Subramanian.A, "Skolem Mean Labeling", Bullentin of Pure and Applied Sciences, vol. 26E No.2, 2007,245-248.
[5] Ponraj.R and Somasundaram.S, "Mean Labeling of graphs," in National Academy of Science Letters, vol.26, pp.210-213, 2003.
[6] Sandhya.S.S, Somasundaram.S and Anusa.S, "Root Square Mean Labeling of Graphs," International Journal of Contemporary Mathematical Sciences, Vol.9, 2014,no. 667-676.
[7] Sandhya.S.S, Somasundaram.S and Anusa.S, "Some More Results on Root Square Mean Labeling of Graphs," Journal of Mathematics Research, Vol.7, No.1;2015.
[8] Sandhya.S.S, Somasundaram.S and Anusa.S, "Root Square Mean Labeling of Some New Disconnected Graphs,"International Journal of Mathematics Trends and Technology, volume 15, number 2,2014.page no:85-92.

