International Research Journal of Engineering and Technology (IRJET)Volume: 07 Issue: 04 | Apr 2020www.irjet.net

HARDWARE OPTIMISATION OF APPROXIMATE MULTIPLIER USING

APPROXIMATE HIGH ORDER COMPRESSORS

¹Mrs. V Jeyaramya M.E. (Ph.D), ²Reethika J, ³Priyatharisini E, ⁴Pavithra R

¹Associate Professor, Dept. of Electronics and Communication Engineering, Panimalar Institute of Technology, Chennai-600123,Tamilnadu,India.

²Student, Dept. of Electronics and Communication Engineering, Panimalar Institute of Technology, Chennai-600123, Tamilnadu, India.

³Student, Dept. of Electronics and Communication Engineering, Panimalar Institute of Technology, Chennai-600123, Tamilnadu, India.

⁴Student, Dept. of Electronics and Communication Engineering, Panimalar Institute of Technology,Chennai-600123,Tamilnadu,India. ****_______

Abstract - The power optimization and reducing the components in the multiplier is a challenging part in a electronic device. Multiplier is a big deal in these devices as it is one the most complex and major source of power dissipation. Even though Approximate Computing provides internal inconsistency as it plays a major role in designing electronic applications. In order to prevail this issue, in this paper an explanation of the design of 16-bit Approximate multiplier with approximate high order compressor is designed. The simulation and synthesization of this approximate multiplier is done by using Xilinx ISE Design Suite 14.7.

Keywords: Approximate, power dissipation, reliability, multiplier, Xilinx ISE.

1. INTRODUCTION

IRJET

Digital signals play a major role in the design of most of the applications like audio compression, video processes compression, and wherein the Microprocessor and Digital Signal Processor(DSP) play a pivotal l role in handling the complications of digital signals. The operations like convolution, correlation and filtering are mostly computed by using Digital Signal. Of the electronic components Multipliers, Shifters and Adders play a notable role in executing these operations. Multipliers take more time and higher power than other components. The Approximate high order compressors are used to optimize the Approximate multipliers in order to increase their speed performance.

2. CATEGORIZATION OF MULTIPLIER 2.1 Approximate Compressor:

The significant role of the compressor is that it reduces the stages of the product and consumes low power along with low latency. High order compressors are used in-case of our design wherein these compressor produces efficient results as in-terms of power being utilised and in reduction of an LUT slices and providing speed of performance. The value of error rate(ER),error distance(ED) and normalized error distance(NED) are important factor to determine the final output in an approximate multiplier.

2.2 Approximate Multiplier:

These are the part of the circuit which exhibit high tolerance to inaccuracy which are advocated for energy-efficient computing in most of the applications. The prime reason for choosing approximate multipliers in our design is that (1) the type of full adder circuit used to construct the multiplier, (2) array or tree i.e. architecture of used to construct the multiplier, (3) placement of submodules in the main multiplier module.

3. LITERATURE SURVEY

Approximate compressors are widely studied and they are used in optimizing the multipliers for the reduction of errors in the design but this design gives unequal delay in the signal. **"Approximate Compressors for Error-Resilient Multiplier Design"** Zhixi Yang, Jie Han, Fabrizio Lombardi [1] These designs can also cause the increase in the count of the transistors being used and power dissipation. Recently **"A Low-Power, High-Performance Approximate Multiplier with Configurable Partial Error Recovery"**CongLiu, JieHan, Fabrizio Lombardi published wherein it consumes high area and so the quality of the image gets reduced. The design which was

published consumes high area and so the quality of the image gets reduced.

4. OBJECTIVE OF WORK

- 1. The proposed design is implemented inorder to reduce the partial product stages in multiplication.
- 2. The approximate multiplier along with the high order compressor helps to reduce the area, power, time delay and reduce the number of LUT's.

5. EXISTING SYSTEM

Three-Bit Stacking Circuit

The existing system is based on the method of "THREE BIT STACKING", this proposed system is perceived to be a 6:3 counter wherein all the "1" bits are grouped together by first stacking of all the input bits. Two 3-bit stackings are used inorder to output the 6-bit count. The symmetric stack techniques adds one or more extra layers of logic which is combined as 3-bit stacks.

Fig-1: Three bit Stacker Circuit

The output formed from this circuit are Y0=X0+X1+X2

Y1=X0X1+X0X2+X1X2 Y2=X0X1X2

The output Y1 is the vital function which can be implemented using one CMOS gate.

TOP LEVEL MODULE

TIMING ANALYSIS

Minimum period: No path found

Minimum input arrival time before clock: No path found Maximum output required time after clock: No path found Maximum combinational path delay: 20.671ns

Fig-3: Timing Analysis

DEVICE UTILIZATION SUMMARY

	mbe8 Project Status (02/21/2020 - 10:09:14)						
Project File:	SYMMETRIC_STAKING.xise	Parser Errors:					
Module Name:	mbe8	Implementation State:	Synthesized				
Target Device:	xc6slx9-3tqg144	• Errors:	No Errors				
Product Version:	ISE 14.7	• Warnings:	<u>37 Warnings (37 new)</u>				
Design Goal:	Balanced	 Routing Results: 					
Design Strategy:	Xilinx Default (unlocked)	 Timing Constraints: 					
Environment:	System Settings	 Final Timing Score: 					

Device Utilization Summary (estimated values)						
Logic Utilization	Used	Available	Utilization			
Number of Slice LUTs	215	5720		3%		
Number of fully used LUT-FF pairs	0	215		0%		
Number of bonded IOBs	32	102		31%		

Fig-4: Device Utilization Summary

e-ISSN: 2395-0056 p-ISSN: 2395-0072

							6.00000 us
Name	Value	Pus	1us	2us	βus	4us	5us
■ a(8:1)	54	Z	58	90	75	102	54
▶ <table-of-contents> b[7:0]</table-of-contents>	80	Z	86	35	20	63	80
Ug cen	0						
lle c_0	0						
🕨 🙀 fd[1:0]	0	2			0		
🕨 🎆 sum(15:0)	4320	X	4988	3150	1500	6425	4320
Inalsum[15:0]	000100001110000	000000000000000000000000000000000000000	0001001101111100	0000110001001110	0000010111011100	0001100100011010	0001000011100000
🕨 🙀 x1(15:0)	000000000000000000000000000000000000000	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1111111110001011	1111111100000101	0000000000000000000000	111111110011001	0000000000000000000
▶ 🍢 y1(15:0)	000000000000000000000000000000000000000	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0000000001110100	0000000001011010	0000000001001011	00000000	0000000
▶ 🍓 z1[15:0]	000000000011011	000000000000000000000000000000000000000	000000000111010	111111101001011	0000000001001011	000000000000000000000000000000000000000	000000000110110
🕨 🙀 w1[15:0]	000000000011011	20000000000000	000000000111010	000000001011010	0000000000000000000000	000000001100110	000000000110110
▶ 🙀 x2(15:0)	0000000000000000	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1111111110001100	111111110100110	0000000000000000000000	111111110011010	0000000000000000000
▶ 🍓 y2(15:0)	000000000000000000000000000000000000000	2000000000000000	0000000001110100	0000000001011010	0000000001001011	00000000	0000000
🕨 🙀 z2(15:0)	000000000011011	20000000000000	000000000111010	111111101001100	000000001001011	000000000000000000000000000000000000000	000000000110110
▶ 👯 w2[15:0]	000000000011011	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000000000111010	000000001011010	0000000000000000000000	000000001100110	000000000110110
🕨 🎼 x(15:0)	000000000000000000000000000000000000000	20000000000000	111111110001100	111111110100110	0000000000000000	111111110011010	00000000000000000
		1010301200120000	ARAAAAA		******		
		X1: 6.000000 us					

OUTPUT WAVEFORM

Fig-5: Output Waveform

6. REQUIREMENTS OF APPROXIMATE MULTIPLIER

[I] Xilinx ISE is the major tool used for the implementation of the design which consists of the following fundamental steps: Design, Synthesis, Place and Route, Program.

[II] After these fundamental steps are accomplished the second part of simulation is the test bench simulation which is used to test the design by driving the inputs and observing the output to verify the design.

[III] Verilog is a Hardware descriptive language which is used in-order to describe the various propagation time and signal strengths. Since it takes less time to write large description of circuit in a short form, it is used in implementation design.

[1] BINARY MULTIPLIER

Two methods namely Partial product addition along with shifting or by using parallel multipliers the multiplication operation of two binary numbers can be performed.

OUTPUT WAVEFORM

Fig-6: Output Waveform of Binary Multiplier

TIMING ANALYSIS

Cell:in->out	fanout	Gate Delay	Net Delay	Logical Name (Net Name)
		1 000		
1BUF:1->0	10	1.222	1.109	a_1_IBOF (a_1_IBOF)
L012:10->0	4	0.203	1.048	t<2>1 (t<2>)
LUT6:10->0	3	0.203	0.995	f4/carryl (c<4>)
LUT5:10->0	2	0.203	0.864	f7/carryl (c<7>)
LUT6:12->0	2	0.203	0.981	f15/Mxor_sum_xo<0>1 (s<16>)
LUT6:10->0	2	0.203	0.721	fl6/carryl (c<17>)
LUT6:14->0	2	0.203	0.721	f22/carryl (c<23>)
LUT6:14->0	1	0.203	0.827	f29/carryl (c<30>)
LUT6:12->0	2	0.203	0.981	f35/Mxor sum xo<0>1 (s<36>)
LUT6:10->0	3	0.203	0.651	f36/carryl (c<37>)
LUT4:I3->0	2	0.205	0.981	f41/Mxor sum xo<0>1 (s<42>)
LUT6:10->0	2	0.203	0.981	f42/carryl (c<43>)
LUT6:10->0	2	0.203	0.981	f46/Mxor sum xo<0>1 (s<47>)
LUT6:10->0	3	0.203	0.651	f47/carryl (c<48>)
LUT4:13->0	2	0.205	0.981	f50/Mxor sum xo<0>1 (s<51>)
LUT6:10->0	2	0.203	0.981	f51/carrv1 (c<52>)
LUT6:10->0	2	0.203	0,981	f53/Mxor sum xo<0>1 (s<54>)
LUT6: 10->0	2	0.203	0.617	f54/carryl (c<55>)
LUT4:I3->0	1	0.205	0.579	f55/carryl (out 15 OBUF)
OBUF: I->O		2.571		out 15 OBUF (out<15>)
Total		2.571 24.087ns	(7.453	out_15_OBUF (out<15>)

Fig-7: Timing Analysis

DEVICE UTILIZATION SUMMARY

Fig-8: Device Utilization Summary

[2] BOOTH MULTIPLIER

The two binary number is multiplier using this method which is carried out by using an algorithm that multiplies two signed binary numbers using 2's complement.

OUTPUT WAVEFORM

Fig-9: Output Waveform of Booth Multiplier

TIMING ANALYSIS

Cell:in->out	fanout	Gate Delay	Net Delay	Logical Name (Net Name)
FDR:C->0	3	0.447	0.650	count 3 (count 3)
INV:I->0	1	0.206	0.579	busyl INV 0 (busy OBUF)
OBUF:I->0		2.571		busy_OBUF (busy)
Total		4.453ns	(3.224	ns logic, 1.229ns route) logic, 27.6% route)

Fig-10: Timing Analysis

DEVICE UTILIZATION SUMMARY

		wallace	Project S	tatus				
Project File:	Wallace.xise		Parser E	rrors:		No E	rrors	
Module Name:	wallace		Implementation State:			Synthesized		
Target Device:	xc6slx9-3tqg1	44	• E	• Errors:			No Errors	
Product Version:	ISE 14.7			• Warnings:			6 Warnings (6 new)	
Design Goal:	Balanced		• R	outing Resu	its:			
Design Strategy:	Xiinx Default	(unlocked)	Timing Constraints:					
Environment:	System Settin	gs	+F	inal Timing S	icore:			
Number of Slice LUTs Number of fully used LUT-F	F pairs		92		5720 92			1%
Logic Utilization		Used	97	Available	5720	Utilizatio	in	184
Number of fully used LUT-F	F pairs		0		92			0%
Number of bonded IOBs			32		102			31%
		Detailed Re	ports					E
Report Name	Status	Generated		Errors	Warnings		Infos	
Synthesis Report	Current	Mon 9. Mar 17:58:4	6 2020	0	6 Warnings (6 new)	6 Infos (6	newl
Translation Report								
Map Report								

Fig-11: Device Utilization Summary

[3] WALLACE TREE MULTIPLIER

The multiplication of binary numbers using this multiplier is carried out by the reduction of the partial product matrix into two row matrix by half adder, full adder and carry save adder. A fast propagate adder are used to add these two rows.

OUTPUT WAVEFORM

Fig-12: Output Waveform of Wallace Tree Multiplier

TIMING ANALYSIS

LUT4:I1->0	1	0.205	0.808	all4/carryl (c49)
LUT6:13->0	4	0.205	1.028	al00/Mxor sum xo<0>5 (su
LUT6:I1->0	1	0.203	0.579	a78/carryl (sum 15 OBUF)
OBUF:I->O		2.571		sum_15_OBUF (sum<15>)
Total		19 7060	16 440	ne logic 13 266ne routel
rocar		19.700113	(32.7%	logic, 67.3% route)

Fig-13: Timing Analysis

DEVICE UTILIZATION SUMMARY

Project File:	booth.xise		Parser E	Parser Errors:		No Errors	No Errors	
Module Name:	booth_multiplier	booth_multpler Implem xc6sk9-3tag144 •1 ISE 14.7 •1		Implementation State: • Errors: • Warnings:		Synthesized No Errors 17 Warnings (17 new)		
Target Device:	xc6slx9-3tqg14							
Product Version:	ISE 14.7							
Design Goat	Balanced		• R	touting Results:				
Design Strategy:	Xiinx Default (u	nlocked)	•1	iming Constraints	s:			
			Final Timing Score:					
Environment:	System Settings	£	• F	inal Timing Score:	8			
Environment:	System Settings Device	tutilization Su	• F	inal Timing Score: ated values)	8			E
Environment: Logic Utilization	System Settings Device	E Utilization Su	•F	inal Timing Score: ated values) Available		Utilization		Ð
Environment: Logic Utilization Number of Sice Registers	System Settings Device	E Utilization Su	• F mmary (estima 28	inal Timing Score: ated values) Available	11440	Utilization		[-] 0%
Environment: Logic Utilization Number of Sice Registers Number of Sice LUTs	System Settings Device	Utilization Su Used	• F mmary (estima 28 38	inal Timing Score: ated values) Available	11440	Utilization		0%
Environment: Logic Utilization Number of Sice Registers Number of Sice LUTS Number of fully used LUT-FI	System Settings Device pairs	Utilization Su Used	• F mmary (estima 28 38 20	inal Timing Score: ated values) Available	11440 5720 46	Utilization		0%
Environment: Logic Utilization Number of Sice Registers Number of Sice LUTS Number of fully used LUT-FI Number of bonded IOBs	System Settings Device pairs	E Utilization Su Used	• F mmary (estima 28 38 20 35	inal Timing Score: ated values) Available	111440 5720 46 102	Utilization		0% 0% 43% 34%

Fig-14: Device Utilization Summary

7. APPROXIMATE MULTIPIER

7.1 Approximation of Carry

The equation can be implemented as modified half adder and modified full adder. The below Figure gives the logic of modified half adder and the logic of modified full adder, respectively. The approximate logic can be constructed for carry output of an high order approximate compressor using modified half adder and modified full adder. Approximate 5:2 compressor is used to obtain the carry output. Examples: When the number of input bits is 5 (i.e., n = 5), we can split the 5 input bits into 2 groups: one group includes X0, X1, X2, and also includes X3 and X4.

MODIFIED HALF ADDER

MODIFIED FULL ADDER

Fig-16: Modified full adder

(1).Carry output of approximate 5:2 compressor

Carry output of our approximate 5:2 compressor is:

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Cf (X0, X1, X2) +Ch (X3, X4) + Ch (X0+X1+X2, X3+X4).

Fig-17: Modified Carry Output

7.2 Approximation of sum

We study the approximation of the logic of *Sum* output. Conventionally, the trees of XOR gates are used to produce the output Sum. However, compared with other logic gates, XOR gate often has larger design overheads. We use the logic gates in SAED 32nm cell library as an example. Table I tabulates the comparisons among OR gate, NOR gate, XNOR gate, and XOR gate. FromTable I, we find that XOR gate has the largest power, the largest area, and the largest delay. Thus, if we can replace XOR gates with other logic gates, all the design over heads (including the power, the area, and the delay) can be reduced.

7.3 RESULT

TOP LEVEL MODULE

Fig-19: Top level Module

7.4 TIMING ANALYSIS

Minimum period: No path found

Minimum input arrival time before clock: No path found Maximum output required time after clock: No path found Maximum combinational path delay: 10.073ns Fig-20: Timing Analysis

7.5 OUTPUT WAVEFORM

Fig-21: Output Waveform

DEVICE UTILIZATION SUMMARY

	multiplier Project Status (02/21/2020 - 10:55:14)						
Project File:	highorder. xise	Parser Errors:	No Errors				
Module Name:	multiplier	Implementation State:	Synthesized				
Target Device:	xa7a100t-2Icsg324	•Errors:					
Product Version:	ISE 14.7	• Warnings:					
Design Goal:	Balanced	 Routing Results: 					
Design Strategy:	Xilinx Default (unlocked)	 Timing Constraints: 					
Environment:	System Settings	• Final Timing Score:					

Device Utilization Summary (estimated values)						
Logic Utilization	Used	Available	Utilization			
Number of Slice LUTs	69	63400		0%		
Number of fully used LUT-FF pairs	0	69		0%		
Number of bonded IOBs	32	210		15%		

Fig-22: Device Utilization Summary

8. COMPARISON OF MULTIPLIERS

MULTIP LIERS	APPRO XIMAT E	BOOT H	SYM METR IC STAC KING	WAL LACE TREE	BIN ARY
No of LUT's	62	75	215	92	107
No of IOB bonds	32	35	32	32	32
Power (mw)	1.5	2.0	3.1	2.2	2.8
Time delay (ns)	10.073	14.45 3	20.0 61	19.7 06	24. 087

9. CONCLUSION

The approximate high order compressor architecture has been designed and synthesized using on Spartan6XC6SLX9 board and simulated in Xilinx ISE Design Suite 14.7. The performance of proposed Multiplier with high order compressor is compared with fast binary counter based symmetric staking multiplier. It can be inferred that high order compressor is faster and area efficient compared to binary counter based symmetric staking multiplier. In future the performance of the proposed multiplier can be improved and applied in applications like video and image processing.

10. REFERENCE

- [1] Z.Yang, J.Han and F.Lambordi, "Approximate Compressor for Error-Resilient Multiplier Design", Proc. of IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, 2015.
- [2] A.Momeni, J.Han, P.Montuschi and F.Lombardi, "Design Analysis of Approximate Compressors for and Multiplication" IEEE Trans. on Computers, vol 64, no.4, pp. 984-994,2015
- [3] C. Liu, J. Han, and F. Lombardi, "A Low- Power, High-Performance Approximate Multiplier with Configurable Partial Error Recovery", Proc. of IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE),2014.
- [4] G. Zervakis, et al., "Design-Efficient Approximate Multiplication Circuits Through Partial Product Perforation", IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol.24, no.10, pp. 3105-3117,2016.
- [5] T. Yang, T. Ukezono, and T. Sato "A Low- Power High-Speed Accuracy Controllable Approximate Multiplier Design", Proc. Of IEEE Asia and SouthPacific Design Automation Conference (ASPDAC),2018.
- [6] A. Cilardo, et al., "High-Speed Speculative Multipliers Based on Speculative Carry-Save Tree", IEEE Trans. on Circuits and Systems - I, vol. 61, no. 12, pp. 3426-3435,2014.
- [7] J. Liang, et al., "New Metrics for The Reliability of Approximate and Probabilistic Adders", IEEE Trans. on Computers, vol. 62, no. 9, pp. 1760-1771, 2013.