CHARACTERISTICS OF BUTT JOINT PRODUCED BY FRICTION STIR WELDING PROCESS

Dr D. Santharao, M. Jayaram, M. Harish, M. Anil Kumar

Abstract: The welding is the process of joining similar metals and dissimilar metals by melting the material with or without the use of filler material. Aluminum alloys are the major applications in welding process like aerospace industries, ship building industries. Friction stir welding is a novel technique for production of joints in solid state. The various process parameters are spindle speed, feed, load and geometry of the tool. The joining of similar Aluminum Alloys was carried out using friction stir welding (FSW) techniques are rotational speed, transverse speed, tool geometry. In this process aluminum alloy butt joint are prepared using Friction stir welding with varying process parameters are rotation speed, transverse speed by keeping constant load and tool geometry. The mechanical properties such as tensile strength, hardness and impact strength were evaluated. The microstructures of joints were analyzed using optical microscope and scanning electron microscope. The corrosion properties were also analyzed by using salt spray corrosion test.

KEYWORDS: CONICAL PLANE TAPERED TOOL, TENSIILE STRENGTH, IMPACT STRENGTH, HARDNESS, MICROSTRUCTURE, CORROSION RESISTANCE, FRICTION STIR WELDING.

1. INTRODUCTION

Friction stir welding (FSW) is a relatively new joining process that has been used for high production since 1996. Because melting does not occur and joining takes place below the melting temperature of the material, a high-quality weld is created. This characteristic greatly reduces the ill effects of high heat input, including distortion, and eliminates solidification defects. Friction stir welding also is highly efficient, produces no fumes, and uses no filler material, which make this process environmentally friendly.

The joining of similar Aluminium Alloys was carried out using friction stir welding (FSW) technique and the process parameters were optimized using Taguchi orthogonal design of experiments. The rotational speed, transverse speed, tool geometry and ratio between tool shoulder diameter and pin diameter were the parameters taken into consideration.

The optimum process parameters were determined with reference to tensile strength of the joint. The predicted optimal value of tensile strength was confirmed by conducting the confirmation run using optimum parameters. This study shows that defect free, high efficiency welded joints can be produced using a wide range of process parameters and recommends parameters for producing best joint tensile properties.

The other properties like hardness, impact strength, corrosion of the welded joint will be estimated. The joining of similar Aluminium Alloys was carried out using friction stir welding (FSW) technique and the process parameters were optimized using Taguchi orthogonal design of experiments. The rotational speed, transverse speed, tool geometry and ratio between tool shoulder diameter and pin diameter were the parameters taken into consideration. The optimum process parameters were determined with reference to tensile strength of the joint. The predicted optimal value of tensile strength was confirmed by conducting the confirmation run using optimum parameters. This study shows that defect free, high efficiency welded joints can be produced using a wide range of process parameters and recommends parameters for producing best joint tensile properties. The other properties like hardness, impact strength, corrosion of the welded joint will be estimated.

2. IDENTATIONS
The base materials selected for this investigation were AA5083 aluminium alloys sheets of 6 mm thickness having chemical composition and mechanical properties shown in the Table I. In the present study, sheets of size 140mm x 70mm of AA5083 were cut for welding by FSW.

Aluminium - balance
 Chromium - 0.05-0.25% max
 Copper - 0.1% max
 Iron - 0.4% max
 Magnesium - 4.0 to 4.9%
 Manganese - 0.4 to 1.0%
 Silicon - 0.4% max
 Titanium - 0.15% max
 Zinc - 0.25% max

The specimens used for the friction stir processing experiments were machined from AA5083 aluminum alloy plates, which were purchased on the open market, into 3.0 mm x 50 mm x 160 mm plates. Two plates of AA5083 aluminum alloy were friction stir welded in the butt joint configuration.

 Height of the material - 140mm
 Width of the material - 70mm
 Thickness of the material - 6mm

3. FIGURES AND TABLES

Fig 1: conical plane tapered too
Table 1: process parameters of the tool

<table>
<thead>
<tr>
<th>TOOL SPEED [rpm]</th>
<th>FEED PER DEPTH [mm]</th>
<th>TILT ANGLE [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>560</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>710</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>900</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>1120</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>1400</td>
<td>60</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig 2: welding method

In FSW process heat generated by friction between the surface of the plates and the contact surface of a special tool, composed of two main parts are shoulder and pin. Shoulder is responsible for the generation of heat and for containing the plasticized material in the weld zone, while pin mixes the material of the components to be welded, thus creating a joint. This allows for producing defect-free welds characterized by good mechanical and corrosion properties.
Fig 3: welding specimens

These specimens are cut by requirement tests by manual CNC machine with ASTM standards of FSW process. The alloys are fine structure it can be performed by the process which can be processed some other properties with the help of process parameters. At high temperatures and low strain rates, a rate independent flow may be observed, attributed to a thermal friction stress. Thermal vibrations of the lattice supply insufficient energy for overcoming of the long range barriers, such as large precipitations, for example. This a thermal friction stress is influenced by the crystal structure of the material, but is highly alloy dependent an increase of the content of alloying elements will arise in an increase of the a thermal friction stress.

Fig 4: cutting specimens for testing
The mechanical properties of a material are those which affect the mechanical strength and ability of a material to be molded in suitable shape. Some of the typical mechanical properties of a material include:

1. Tensile strength
2. Impact strength
3. Hardness test
4. Microstructure
5. Corrosion test

4. CONCLUSION

1. The Analysis of Variance for the ultimate tensile strength result concludes that the design is the most significant parameter with a percentage of 67.91%.

2. The Analysis of Variance for the yield strength result concludes that the tool design is the most significant parameter with a percentage of 21.03%.

3. The Analysis of Variance for the % of elongation result concludes that the tool design is the most significant parameter with a percentage of 23.76%.

4. The Analysis of Variance for the Impact Strength result concludes that the tool design is the most significant parameter with a percentage of 30%.

5. The optimum combination of parameters obtained from the main effect plot for mean is process parameters of tool design of taper cylindrical, Different welding speeds (mm/min).

The aluminum plates were welded using rounded profile tool at a speed of 560 rpm to 1400 rpm with different feeds. The welded plates were first sectioned according to the specific test specimen dimensions are noticed, the following tests which were performed on the welded plates are as given below: Destructive Testing is conducted as below UTM (Universal Testing Machine), Hardness Testing, Impact Testing, Hardness testing, microstructure testing, corrosion testing were noticed in the alloy on FSW in the second joint. Since the second phase particles were not discernible by optical microscopy. Density of precipitates has decreased as a result of coarsening; Grain boundary precipitates have also coarsened. The effects of process and tool parameters on macrostructure of the friction stir welded joints.

Table 5: Mechanical properties of FSW specimens

<table>
<thead>
<tr>
<th>S.NO</th>
<th>MATERIAL</th>
<th>HARDNESS[ppm]</th>
<th>ELONGATION[%]</th>
<th>TENSILE STRENGTH[pa]</th>
<th>IMPACT STRENGTH[joules]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BASE MATAL</td>
<td>96.5</td>
<td>23.36</td>
<td>287.765</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>SAMPLE-1</td>
<td>83.5</td>
<td>2.88</td>
<td>142.883</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>SAMPLE-2</td>
<td>84.8</td>
<td>6.80</td>
<td>232.373</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>SAMPLE-3</td>
<td>85.9</td>
<td>4.80</td>
<td>138.745</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>SAMPLE-4</td>
<td>85.8</td>
<td>2.60</td>
<td>139.983</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>SAMPLE-5</td>
<td>87.9</td>
<td>6.76</td>
<td>224.023</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 6: Mechanical properties of corrosion resistance

<table>
<thead>
<tr>
<th>S NO</th>
<th>MATERIAL</th>
<th>ROTATION SPEED[rpm]</th>
<th>CORROSION STRENGTH[volume loss]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BASE METAL</td>
<td>650</td>
<td>NO LOSS</td>
</tr>
<tr>
<td>2</td>
<td>SAMPLE 2</td>
<td>710</td>
<td>NO LOSS</td>
</tr>
<tr>
<td>3</td>
<td>SAMPLE 3</td>
<td>900</td>
<td>NO LOSS</td>
</tr>
</tbody>
</table>
5. REFERENCES

