

International Research Journal of Engineering and Technology (IRJET)e-ISSNVolume: 07 Issue: 02 | Feb 2020www.irjet.netp-ISSN

Finite Element Analysis of Shock Absorber

Abhishek K Padir¹

¹Dept. of Mechanical Engineering, Pillai College of Engineering, Maharashtra, India

Abstract – In vehicles problem happens while driving on bumping road condition. The objective of this study is to analyze the performance of Shock absorber. Shock absorber is an important part of mechanical system. The Shock absorber which is one of the Suspension systems is designed mechanically to handle shock impulse and dissipate energy. It decreased the amplitude of disturbances leading to increase in comfort and improved ride quality. The spring is compressed quickly when the wheel strikes the bump. The compressed spring rebound to its normal dimension or normal loaded length which causes the body to be lifted. The spring goes down below its normal height when the weight of the vehicle pushes the spring down. This, in turn, causes the spring to rebound again. The spring bouncing process occurs over and over every less each time, until the up-and-down movement finally stops. The vehicle handling becomes very difficult and leads to uncomfortable ride when bouncing is allowed uncontrolled. Hence, the designing of spring in a suspension system is very crucial. The analysis is done by considering bike mass, loads, and no of persons seated on bike. Modeling and Analysis is done using Solid Works and ANSYS Software.

Key Words: shock absorber, dissipation, analysis, suspension system, ANSYS.

1. INTRODUCTION

Shock absorbers are a critical part of a suspension system, connecting the vehicle to its wheels. The need for dampers arises in common with carriages and railway because of the roll and pitches associated with locomotives, most early motor vehicles used leaf springs. In the mid nineteenth century, road that the friction between the leaves offered a quality was generally very poor. Shock absorbers are devices that smooth out an impulse experienced by a vehicle, and appropriately dissipate and absorb the kinetic energy. One of the problems is that the vehicle bounces continuously more than one times and it is called bouncing problems. There are various instruments are available for converting a collision into relatively smooth contact such as Metal spring, Rubber Buffer, Hydraulic Dashpot etc. The main function of the shock absorber is to absorb the shocks and damp them as soon as possible so that a smooth ride can be obtained. It limits vehicle body movement and it stabilizes our ride. It stabilizes vehicle tires which are disturbed due to sudden shock, hence it is one of the important factor for safety purpose also

2. DESIGN CALCULATIONS FOR HELICAL SPRINGS FOR SHOCK ABSORBERS

Material Used - Spring Steel Modulus of rigidity (G) - 78600 N/mm2 Maximum Force - 3355 N Ultimate Tensile Strength - 2000/d0.17 N/mm2 Yield strength - 1200/d0.17 N/mm2 Number of turns - 6

1. Allowable Shear Stress: Take Factor of Safety (FOS) Nf =1.5. The allowable shear stress for spring material (carbon steel) is given by allowable shear stress = Yield strength /FOS = 1200/d0.17 x 1/1.5 = 800/d0.17 N/mm2

2. Wire Diameter: Let us assume c=5. Kw = 4C-1 + 0.615 = (4x5)-1 + 0.615 4C-4 C (4x5)-4 5 =1.3105

Shear stress induced is $\tau = \text{Kw} [8\text{FmaxC}] / [\pi d2]$

800/ d^{0.17} = 1.3105 x 8 x 3355 x 5/πd2 d = 10 mm

3. Mean Coil Diameter: $D = Cd = 5 \times 10 = 50$

4 Inside diameter of coil: D1 = D - d = 50 - 10 = 40 mm

5. Stiffness of spring:

 $K = G * d/8C^3n$ = (78600 x 10)/ (8 x (5)3 x 6) K = 131 N/mm

6. Solid Length:

 $Ls = (n + 2)*d = (6 + 2) \times 10 = 80mm$

7. Free Length:

LF = solid length + max compression + total clearance = $80 + 46.91 + (46.91 \times 0.15)$ = 133.94 mm

8. Pitch:

LF = p*n + 2d 133.94 = p x 6 + 2 x 10 p = 18.99 mm

9. Helix Angle:

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Helix angle is $\alpha = \tan - 1 (p/\pi d) \tan - 1(18.99/\pi x 50) = 6.89$

RIET

10. Solid Stress Expected compression of spring at solid length is, $\delta = \delta \max + 0.15 \delta \max$ = 46.91 + 0.15 x 46.91 = 53.94 mm Force acting on spring at solid length, $Fs = K \times \delta s$ = 131 x 53.94 = 7062.21 N Shear stress induced in spring at solid length is. $\tau s = Kw [8FsC]$ [πd2] = 1.3105 x 8 x 7062.21 x 5 3.14 x (10)2 = 1178.38 N/mm2 Yield strength in shear for spring material, Svt = 811.29 N/mm2 Available FOS, Nfs = 1178./811.29 = 1.452

Hence, spring is safe at solid stress.

3. DESIGN OF PISTON ROD

Material: Steel - C-45 (%C: 0.40%-0.50%) Tensile Strength: 670 N/mm2 Yield Stress: 360 N/mm2 Maximum Force on Piston Rod: 3355 N Diameter of Piston Rod: 10 mm Consider the failure of piston rod due to tension $\sigma t = F/A$, σt: Tensile Strength F= Force Applied A= Area $A = (\prod / 4)^* d^2$ $= \prod / 4 * 10^{2}$ A = 78.5 mm2 $\sigma t = F/A$ =3355/78.5 $\sigma t = 42.74 \text{ N/mm2}$ $:: \sigma t < Tensile Stress$: The Piston Rod is safe under failure due to tension

4. RIGID DYNAMICS

Rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces. The assumptions state that the bodies are rigid, which means that they don't deform under the action of applied forces, simplifies the analysis by reducing the parameters that describe the configuration of the system to the translation and rotation of reference frames attached to each body.

4.1 Parametric Modelling

Yahat / Equation	Example to	Comments -	
			- 10
	100.00		
		-	-83
	* 105 * 173 * T * T * T	• 100 100 • 17/3 20 • T • V • V • V • V	+ V05 100 + 1 / /3 20 + 1 / /3

Marse	Value / Equation	Evaluates to	Comments	A DE
Global Variables	The second secon			
D	- 62	40		CHIE
Ť.	- ea - 10 / 2	30		
				import
Feature				1
ADDRESS STREET				Exper
11 Equations	1000	The second		Hats
.pr@avent.	= .0.	scient-		10
Dignessi	+ 'V	JONN.		
interest effectivents	Angulat aduation units Degram -	Automatic lob	A constant	
ni to odernal tile.				

Fig -2: Nut Optimisation results

4.2 Mass Properties

Various mass properties like density, mass, volume, principle axis of inertia etc are calculated using SolidWorks which is a type of cad software. The calculated mass properties are according to the material selected for the assembly.

International Research Journal of Engineering and Technology (IRJET) e

Volume: 07 Issue: 02 | Feb 2020

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

		Option
Override Mass Propertie	es Recalcula	ite
Include hidden bodies/co	mponents	
Create Center of Mass fea	ture	
Show weld bead mass		
Report coordinate values rela	ative to: default	
Mass properties of shock ab Configuration: Default Coordinate system: defa		
Mass = 101.46 grams		
Volume = 101457.68 cubic m	illimeters	
Surface area = 42327.27 squ	are millimeters	
Center of mass: (millimeters X = 52.06 Y = 39.62 Z = 103.32)	
Principal axes of inertia and (rtia: (grams * square
Taken at the center of mass. Ix = (-0.00, 1.00, -0.01)	Px = 15024.39	
iy = (-0.81, -0.00, -0.58)		
lz = (-0.58, 0.00, 0.81)	Pz = 253462.03	
Moments of inartial (grams)	* square millimeters)	nut coordinata custos
	and aligned with the out Lxv = -382.00	Lxz = 227.25
Taken at the center of mass a		Lxz = 227.25 Lyz = -1345.77
Taken at the center of mass a Lxx = 253147.99	Lxy = -382.00	
Taken at the center of mass a Lxx = 253147.99 Lyx = -382.00 Lzx = 227.25 Moments of inertia: (grams ³	Lxy = -382.00 Lyy = 15032.61 Lzy = -1345.77 * square millimeters)	Lyz = -1345.77
Taken at the center of mass a Lox = 253147.99 Lyx = -382.00 Lzx = 227.25 Moments of inertia: (grams ' Taken at the output coordin.	Lxy = -382.00 Lyy = 15032.61 Lzy = -1345.77 * square millimeters) ate system.	Lyz = -1345.77 Lzz = 253292.78
Taken at the center of mass a Lox = 253147.99 Lyx = -382.00 Lzx = 227.25 Moments of inertia: (grams ' Taken at the output coordin	Lxy = -382.00 Lyy = 15032.61 Lzy = -1345.77 * square millimeters)	Lyz = -1345.77

Fig -3 Mass properties

5. STRUCTURAL ANALYSIS

Finite element analysis is a numerical method of discretising a complex system into very small pieces called elements. Software implements the equation to find the behaviour of elements.

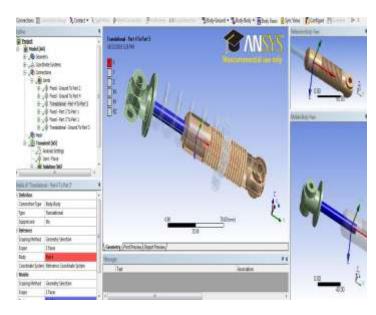


Fig – 4: Kinematic analysis of spring

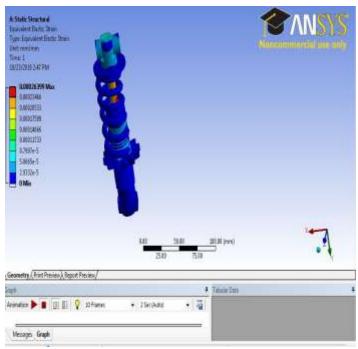


Fig – 5: Strain analysis

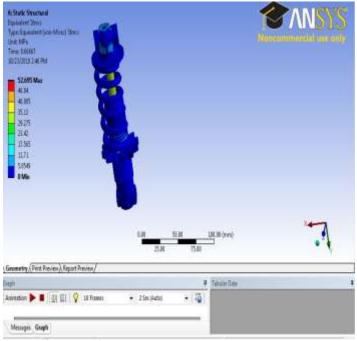


Fig -6 Stress analysis

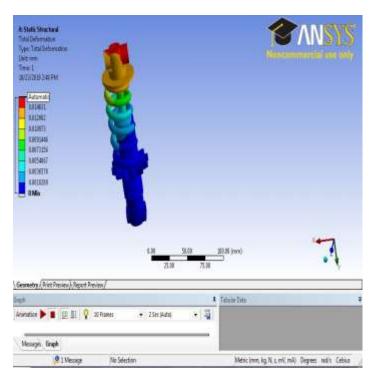


Fig -7 Deformation analysis

REFERENCES

1. Prince Jerome Christopher J. and Pavendhan R., Design and Analysis of Two Wheeler Shock Absorber Coil Spring from International Journal of Modern Engineering Research. 2. Shock Absorber – Wikipedia

3. PSG,2008."DESIGN DATA," Kalaikathir Achachgam publishers, COIMBATORE, INDIA

4. Automobile Engineering by R.B.Gupta

5. Automobile Engineering by G.B.S. Narang.