PARAMETRIC STUDY OF RCC, STEEL AND COMPOSITE STRUCTURES UNDER SEISMIC LOADING

Dr. Ramakrishna Hegde¹, Mr. Bhavani shankar², Mohammed Farooq³

¹Professor & HOD of civil engineering, Srinivas School of Engineering, Mangalore, India ²Assistant Professor, Department of Civil Engineering, Srinivas School of Engineering, Mangalore, India ³M.Tech Student, Department of Civil Engineering, Srinivas School of Engineering, Mangalore, India

***_____

Abstract - In this research work RCC, steel and composite structures comparison are taken into consideration in which same seismic conditions are applied to all the structures and analysis results have been compared to check the suitability of RCC, steel and composite buildings under seismic conditions. Here RCC, steel and composite buildings have been modelled and analysed on the same grid pattern and same external loads are applied on the all three structures. These three buildings are compared on the basis of uniform factor of safety between 2 to 3. The RCC Structure is no longer suitable because of increased dead load, span rejection and less stiffness .The structural engineers are trying to use different materials for most efficient design solution .There is great potential for increasing volume of steel in construction .The percentage of steel can be increased with the use of steel-concrete composite sections. The paper presents the effect of FEC (Fully Encased Composite) on a G+15 storey special moment frame. The building is analyzed and design for seismic loading by using ETAB software. Results are compared for the Base shear, Time period, Storey displacement and storey drift for all three structures. As the composite is having more lateral stiffness, the results of time period and storey displacement shows the significant variation. While analyzing for the performance point for the FEC is significantly much more as compared to the RCC model.

Key Words: E-TABS, Seismic loads, Composite, Displacement, Storey drift, base shear, time period.

1. INTRODUCTION

In present days R.C.C structures &the steelstructures are mostly built, yet another type of **Composite-structures** structures known as additionally come into contemplations. It is very tough to realize that if there must arise an incidence of a low ascent buildings & high rise buildings which kind of structure will be more prudent & likewise provides significant quality. For the furthermost part tall structures are liked to be built as a steel structure & low ascent as R.C.C structures yet Compositestructures can make our structure more sparing & strong. In our exploration work, parametric investigation of Steel, R.C.C& Composite structure is made for elevated structure (G+15) story. For that some review & research papers are examined for the

reference before determination of various segments for these three structures.

Utilizing the manual calculations, the pillar & column segments of Steel, R.C.C & the Composite buildings are chosen such that factor of safety can be normal.

ETABS is utilized for the parametric examination in which, low ascent (G+15) building is taken & then dead load, live load & super imposed load (dead) are connected alongside the seismic load. All the fundamental load combinations are framed. Here if there should be an existence of composite building, columns& beams are provided of composite CFST (Concrete filled steel tubes).& after the investigation, pillar forces, column forces, joint displacements, story accelerations, story drifts, story max displacements, story firmness & story shear are thought about.

2. BUILDING DESCRIPTION

Table - 1: Description of structures			
Description	RCC	Steel	Composite
			structure
No. of	16	16	16
stories			
Total floor	3m	3m	3m
height			
Dimension of	24mX24m	24mX24m	24mX24m
structure			

 Table -1: Description of structures

	Tuble 2 : Material i roperties of donerete and steer				
Property	RCC	Steel	Composite		
			structure		
Grade of steel	Fe 500	Fe	Fe 345		
(N/mm ²)		345			
Grade of	M25,	-	M25, M40		
concrete	M40				
(N/mm^2)					
Poisson's ratio	0.2	-	0.2		
for concrete					
Concrete	25 kN/m ³	-	25 kN/m ³		
density					

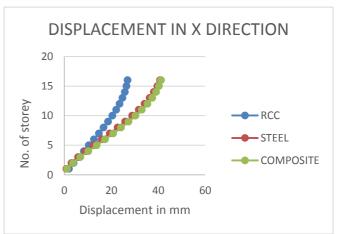

r	Table - 5: Geometric Parameters			
Parameter	RCC	Steel	Composite	
			structure	
Plan	24mX24m	24mX24m	24mX24m	
Beam (in	300X600	ISMB350	ISMB350	
mm)				
Column (in	650X650	650X300X	500X500	
mm)		30	encased	
			ISMB450	
Slab	200mm (2way	100mm	100mm	
thickness	slab)			
Height of	3m	3m	3m	
each storey				
Grade of	M25	-	-	
concrete				
for beam				
Grade of	M40	-	M40	
concrete for				
Column				
Grade of	M25	-	M25	
concrete				
for Slab				

 Table -3: Geometric Parameters

3. RESULTS AND DISCUSSIONS

	DISPLACEMENT IN X DIRECTION				
Store	RCC in mm	Steel in mm	Composite		
у			in mm		
16	26.972	40.835	41.219		
15	26.489	39.642	40.332		
14	25.766	38.17	39.099		
13	24.778	36.36	37.462		
12	23.542	34.205	35.427		
11	22.089	31.728	33.032		
10	20.45	28.963	30.324		
9	18.656	25.956	27.352		
8	16.737	22.753	24.167		
7	14.717	19.404	20.815		
6	12.623	15.967	17.345		
5	10.476	12.505	13.807		
4	8.298	9.106	10.268		
3	6.116	5.891	6.826		
2	3.974	3.055	3.664		
1	1.977	0.913	1.141		

Table 4.1 Displacement of the structure in the X direction

Graph 4.1 Displacement of the structure in the X direction

DISPLACEMENT IN Y DIRECTION				
Store	RCC in mm	Steel in mm	Composite	
у			in mm	
16	26.972	40.835	42.257	
15	26.489	39.642	41.422	
14	25.766	38.17	40.21	
13	24.778	36.36	38.565	
12	23.542	34.205	36.505	
11	22.089	31.728	34.073	
10	20.45	28.963	31.321	
9	18.656	25.956	28.302	
8	16.737	22.753	25.066	
7	14.717	19.404	21.659	
6	12.623	15.967	18.128	
5	10.476	12.505	14.519	
4	8.298	9.106	10.888	
3	6.116	5.891	7.324	
2	3.974	3.055	3.996	
1	1.977	0.913	1.273	

Table 4.2 Displacement of the structure in the Y direction

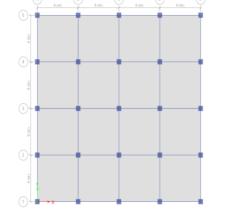


Fig -1 plan view

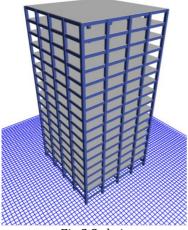
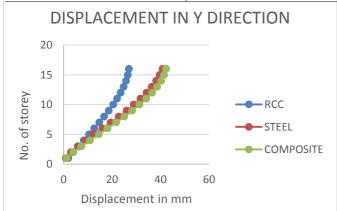
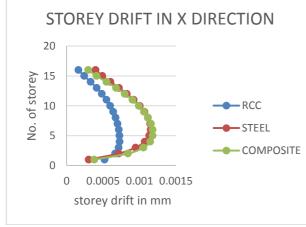
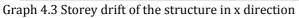



Fig 2 3-d view

Me-ISSN: 2395-0056 [www.actional Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

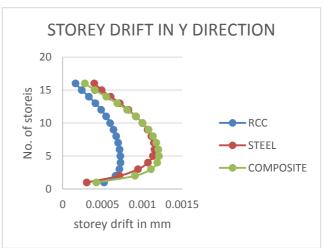
RJET Volume: 07 Issue: 02 | Feb 2020 www.irjet.net


p-ISSN: 2395-0072

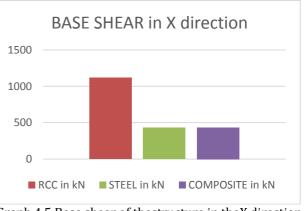


Graph 4.2 Displacement of the structure in the Y direction

STOREY DRIFT IN X DIRECTION					
Store	RCC in mm	Steel in mm	Composite		
У			in mm		
16	0.000162	0.000398	0.000296		
15	0.000241	0.000491	0.000411		
14	0.000329	0.000603	0.000546		
13	0.000412	0.000718	0.000678		
12	0.000484	0.000826	0.000798		
11	0.000546	0.000921	0.000903		
10	0.000598	0.001003	0.000991		
9	0.00064	0.001068	0.001062		
8	0.000673	0.001116	0.001117		
7	0.000698	0.001146	0.001157		
6	0.000716	0.001154	0.001179		
5	0.000726	0.001133	0.00118		
4	0.000727	0.001072	0.001147		
3	0.000714	0.000946	0.001054		
2	0.000666	0.000714	0.000841		
1	0.000521	0.000304	0.00038		


Table 4.3 Storey drift of the structure in x direction

L			<u> </u>	-135N. 2395-00		
	STOREY DRIFT IN Y DIRECTION					
	Storey	RCC in	Steel in	Composite		
		mm	mm	in mm		
	16	0.000162	0.000398	0.000279		
	15	0.000241	0.000491	0.000404		
	14	0.000329	0.000603	0.000548		
	13	0.000412	0.000718	0.000687		
	12	0.000484	0.000826	0.000811		
	11	0.000546	0.000921	0.000917		
	10	0.000598	0.001003	0.001006		
	9	0.00064	0.001068	0.001079		
	8	0.000673	0.001116	0.001135		
	7	0.000698	0.001146	0.001177		
	6	0.000716	0.001154	0.001203		
	5	0.000726	0.001133	0.00121		
	4	0.000727	0.001072	0.001188		
	3	0.000714	0.000946	0.00111		
	2	0.000666	0.000714	0.000908		
	1	0.000521	0.000304	0.000424		
	Table 4.4 Storey drift of the structure in y direction					

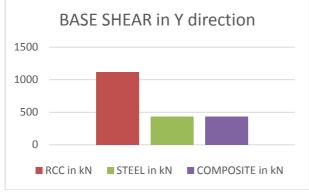

Table 4.4 Storey drift of the structure in y direction

Graph 4.4 Storey drift of the structure in y direction

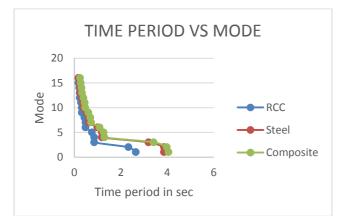
BASE SHEAR in X direction		
R.C.C in kN 1119.299		
STEEL in kN	429.2732	
COMPOSITE in kN 432.1367		
alo 4 E Baga aboan of the atmusture in the V direct		

Table 4.5 Base shear of the structure in the X direction

Graph 4.5 Base shear of thestructure in theX direction


RJET Volume: 07 Issue: 02 | Feb 2020

www.irjet.net


p-ISSN: 2395-0072

BASE SHEAR in Y direction		
R.C.C in kN 1119.299		
STEEL in kN	429.2718	
COMPOSITE in kN 429.632		
ble 4.6 Page cheer of the structure in the V direct		

Table 4.6 Base shear of the structure in the Y direction

Graph 4.6 Base shear of the structure in theY direction

Graph 4.7 Time period v/s modes of a structure

TIME PERIOD VS MODES				
Stor	RCC	Steel	Composite	
ey	(period	(period in	(period in	
	in sec)	sec)	sec)	
1	2.648	3.857	4.055	
2	2.328	3.857	3.977	
3	0.857	3.192	3.412	
4	0.857	1.188	1.297	
5	0.757	1.188	1.26	
6	0.486	0.993	1.09	
7	0.486	0.625	0.723	
8	0.434	0.625	0.692	
9	0.327	0.53	0.608	
10	0.327	0.385	0.472	
11	0.293	0.385	0.445	
12	0.237	0.33	0.396	
13	0.237	0.259	0.334	
14	0.213	0.259	0.31	
15	0.181	0.223	0.279	
16	0.181	0.185	0.248	

Table 4.7 Time period v/s modes of a structure

CONCLUSIONS

1. The Stiffness of composite building is discovered more noteworthy compared with &R.C.Cassembly.

2. Mass of the composite building is low when it is analogized with R.C.C. structure bringing about diminishment of establishment cost.

3. For tall rise assemblies, Composite-structures are observed to be finest method of development.

4. Storey drift for steel erection is more effectively analogized with R.C.C & composite structure.

5. Drift of all structures is within allowable limit.

6. The expanded solidness of R.C.C structures brings about expanded recurrence & reduction in the time period than Composite-structures

7. The greatest relocations are more in the Compositestructures yet inside breaking point. This is on grounds that Composite-structures are efficiently more adaptable when anogolized with R.C.C structures.

8. Because of more slender segment areas in Compositestructures the usable floor region increments

9. The shear power & twisting moment are decreased in the Composite-structures which brings actually about more slender areas in beams.

10. Due to light heaviness of the structure, Compositestructures are less vulnerable against the seismic forces acting on structure.

REFERENCES

- 1) Yongjian Shia, Xia Lib, Analysis of Ductility of Composite Steel-Concrete Structure Based on Computer simulation Technology, Department of Civil and Architecture Engineering, Dalian University, Dalian116622,China.
- Mohd amir khan, Comparative Study of R.C.C & Structural Steel -Concrete Composite Frame for Linear and Non-Linear Analysis International Research Journal of Engineering and Technology p-ISSN: 2395-0072, IRJET Page 2139 July -2017.
- Bhavin H. Zaveri , Bhargav K.Panchotiya, Smit U. Patel, Parametric study of RCC, steel and composite structures under seismic loading, International Journal of Civil Engineering and Technology, pp. 127–147 July-August 2016.
- Renavikar Aniket V.1, Suryawanshi Yogesh, Comparative Study on Analysis and Cost of R.C.C. and Steel-Composite Structure International Journal of Science and Research (IJSR) Volume 5 Issue 7, July 2016.
- 5) Manjari Blessing B, Gayathri S, Comparative Analysis of CFST and RCC Structures Subjected to Seismic Loading, International Journal of ChemTech Research Vol.10 No.8, pp 409-416, 2017.
- 6) Sattainathan.A, Nagarajan.N, Comparative study on the behavior of R.C.C., Steel and composite structure, International Journal on Applications in Civil and Environmental Engineering. 1(3), pp 21–26, March 2015.