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Abstract: In this paper, we have studied some properties of ideals and filters of a meet-semilattice. We have discussed 0-
distributive meet-semilattice and given several characterizations of 0-distributive meet-semilattices directed below. Finally, we 
have included a generalization of prime separation theorem in terms of dual annihilators. 
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1. Introduction: 

             Varlet [7] have given the definition of a 0-sistributive lattice. Then Balasubramani et al [1] have established some 
results on this topic. A lattice L with 0 is called a 0-distributive lattice if for all a, b, c    with a          imply 
a  (   )     Any distributive lattice with 0 is 0 – distributive. In this paper we will study the 0-distributive meet-
semilattices. 

    An ordered set (S,  ) is said to be a meet – semilattice if inf{a, b} exists for all a, b   we write a    in place of inf{a, b}. 

   A meet- semilattice s is called distributive if        (         ) 

Implies the existence of                       with          

For literature on meet- semilattice, we refer the reader to consult   Talukder et al [5,6], Noor et l [3] and Gratzer [2].  

   A meet-semilattice S with 0 is said to be 0-distributive if for any                             implies that       
for some      . 

   Both distributive and modular meet-semilattices share a common property “For all       there exists                 
    .this property is known as the directed below property. Hence a meet-semilattice with this property is known as a 
directed below semilattice. 

 A subset I of a meet-semilattice S is called an upset if             with                  

   Let S be a meet- semilattice. A non-empty subset F of S is called a filter if 

(1) F is an upset, and 

(2)      implies there exists                      

    A filter F is called proper filter of a meet- semilattice S if      

  A proper filter (upset) F in S is called a prime filter (upset) if       

Implies either           . For      the filter  

       F = {    |   + is called the principle filter generated by [a). A prime upset (filter) is called a maximal prime upset 
(filter) if it does not contain any other prime upset (filter). 

  A subset I of S is called an ideal if 

(1)                    (  )                           
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  An ideal I of a meet-semilattice S is called prime ideal if             is a prime filter. 

  A minimal ideal I of S is a proper ideal which is not contained in any other proper ideal. That is, if there is a proper ideal J such 
that               

   Let S be a meet-semilattice with 0. For    .  

Set        *   |           + Then     is called the dual annihilator of A. This is always an upset but not necessarily a 
filter. 

For                

* +  =*   |     +              ** +  +   
 . 

 2. Some properties if ideals and filters of a meet-semilattice  

Lemma.2.1  

  Let S be a meet semilattice with 0. Then every prime upset contains a maximal prime upset. 

Proof: 

           Let F be a prime upset of S and let A denote the set of all prime upset Q contained in F. Then A is non empty as     . Let 
C be a chain in A and  

       Let     * |    +  We claim that M is a prime upset. M is non empty as    .Let             Then   
               Hence                                   

Thus    . Again let                     Then                   Since X is prime upset ,so either          
                                  Hence M is a prime upset . Therefore, we can apply to A the dual form of Zorn’s lemma 

to conclude the existence of a maximal member of A.  

Lemma.2.2 

        Let S be a directed below meet-semilattice. Then the union of any two filters of S is also a filter. 

Proof: 

         Let F, Q be two filters of a directed below meet-semilattice S. Let                       . Then            . 
Since both F and Q are filters. So            . Hence      . Again let        . So                . Since F and 
Q are both filters, then there exists                              . Let        Then               
                         .  

Lemma.2.3  

         Let I be a nonempty proper subset of a meet-semilattice S. Then I is an ideal if and only if S-I is a prime upset. 

Proof:  

           Let I be an ideal of a meet-semilattice S. Now let           

                                       Hence                           .Since I is an ideal, so    is an upset. Since 
I is an ideal, so                                 upset. Let                              . Therefore either 
           as I is an ideal. Hence either               . Therefore     is a prime upset. 

      Conversely let S-I is a prime upset and                   . 
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Thus         as S-I is a prime upset. Hence      .Again , let                                      
                                                        

Corollary.2.4 

        Let I be a nonempty subset of a meet-semilattice S. Then I is a minimal ideal if and only if S-I is a maximal prime upset. 

Theorem.2.5 

        Every proper ideal of a meet-semilattice S with 0 is contained in a minimal ideal. 

Proof: 

     Let I be a proper ideal in S with 0. Let P be the set of all proper ideals containing I. then P is nonempty as    . Let C be a 
chain in P and let    * |   +. We claim that M is an ideal with    . Let            . Then                 . 
Hence      as X is an ideal. Therefore    .Again , Let                                      . Since C is a chain, 
so either           . Suppose                         as Y is an ideal. Hence      , moreover I contain M, so 
M is minimal element of C. then by Zorn’s lemma, P maximal element say Q with     .  

       Now we give a characterization of minimal ideals of a meet-semilattice. 

Theorem.2.6 

        Let S be a meet-semilattice with 0. A proper ideal M in S is minimal if and only if for any element       . there exists 
an element     such that      . 

Proof: 

       Suppose M is minimal and                            Consider    *   |                  +. Clearly    
is an ideal and is proper as                     We have       and so               . Also             , 
so     , 

Which contradicts the minimality of M. Hence there must exists some                     . 

      Conversely, if the proper ideal M is not minimal, then as      there exists a minimal ideal N such that    , for any 
element       . There exists an element                      Hence       imply         which is 
contradiction. Thus, M must be a minimal ideal.  

3. SOME CHARACTERIZATIONS OF 0 – DISTRIBUTIVE MEET SEMILATTICE                                                                         

In this section, we prove our main results of this paper. 

Theorem 3.1 

   Every 0 – distributive meet semilattice is directed below. 

Proof: 

    Let S be a 0 – distributive meet semilattice and b, c   . Then a b= 0 = 0    which implies there exists d   with d      
such that a       Thus d is upper bound of b, c. The converse of the above theorem is not true by    of figure 1.1.                                                                           

Theorem 3.2 

Let a,            be elements of a 0 – distributive meet semilattice S such that a                       Then a 
     for some b               

Proof: 

We want to prove this theorem using mathematical induction method. 
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Let            . Since S is 0 – distributive. So, a       for some           That is, the statement is true for 
            Let ,                          Then for the 0 – distributivity of S,        for some          as  S 
is a 0 – distributive. This implies that a      for some b               Hence by the method of mathematical induction, the 
theorem is true for b            .  

  Following results gives some nice characterization of 0 – distributive meet semilattices. 

Theorem 3.3 

For a directed below meet semilattice S with 0, the following conditions are equivalent: i) S is a 0 – distributive. ii) * +   is a 
filter for all a   S. iii)     is a filter for all finite subsets A of S. iv) Every minimal idea is prime. 

Proof: 

i) ii): 

  Let   * +    and x   y. Since   * +    so we get a   x = 0 implies a   y = 0 as x   y. Hence   * +   and so * +  is an 
upset. Again let     * +  , Thus a          By 0 – distributivity of S, there exists z with z      such that a   
   Therefore z  * +  , and so * +   is a filter. 

  Conversely, let x, y, z    with x          Then y, z   * +  . Since * +   is a filter, so there exists t      such that t   
* +  , and so t     This implies S is 0 – distributive. 

ii)  iii):  

It is trivial by theorem 2.2 as      * +     
 . 

i)  iv): 

 Let I be a minimal ideal of S. Then by corollary 2.4,     is a maximal prime upset. Now suppose x, y      . Then x, y    and 
so by the minimality of I,   ( -      ( -     This implies a         for some a, b      Thus a           
   Since S is 0 – distributive , there exists d     such that a         

  Now, a                        and     is prime implies d      Therefore     is a prime filter and so   is a prime 
ideal. 

iv) i): 

 Let S be not 0 – distributive. Then there are a, b, c   S such that                                    Now, set 
  *   |           +  Clearly I is an ideal and it proper as 0   By theorem2.5     for some minimal ideal J. Now we 
claim that either b           If b, c                  As J is a prime ideal, then we have S   is a prime filter and b, c 
      Since S   is a filter, there is c                       Hence         gives a contradiction. Hence b           
This implies, either                 Thus 0   which contradict the minimality of J. Therefore                
        hence S is a 0-distributive.  

    Note that in case of a 0-distributive lattice L, for any A       is a filter. But this is not true in a directed below meet-semi 
lattice S with 0, as the union of finite number of filters in S is not necessarily a filter. 

Corollary 3.4 

In a 0-distributive meet-semi lattice, every proper ideal is contained in a prime ideal. 

 This immediately follows by theorem 2.5 and theorem 3.3. 
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Theorem 3.5 

In a 0-distributive meet-semi lattice S if {0}   is the union of all filters of S not equal to {0}. Then     {   |* +   * +}  

Proof: 

  Let x      Since x                  Since A * +, so * +   * +  Thus x         That is            

Conversely, let x        So * +   * + Also S is a 0-distributive. Then * +   is a filter of S. Hence A * +  and so 
    * +    This implies x      Thus R.H.S.      which completes the proof.  

   Finally, we give a necessary and sufficient condition for a meet-semi lattice S with 0, 0 be a 0-distributive which is a 
generalization of power and et al. [4; Theorem 7]. 

Theorem 3.6 

 Let S be a meet-semi lattice with 0. Then S is 0-distributive if and only if for any ideal I disjoint with * +   (   )  there exists 
a prime ideal containing I and disjoint with * +    

Proof: 

Suppose S is a 0-distributive meet-semi lattice. Let P be the set of has I    Let C be a chain in P and let    * |   +  First 
we claim that M is an ideal with M         * +      Let x             Then x                 Hence y       is 
an ideal. Thus y    Again, le t x, y    Then x                            Since C is a chain, so either X           
Suppose X             Then       as Y is an ideal. Hence        Thus M is an ideal. Moreover, I contain M and 
M * +     Then by Zorn   lemma, there exists a minimal element Qin P. Hence by Zorn's lemma as in theorem 2.5, there 
exists a minimal ideal I containing P and disjoint from * +    We claim that x    If not, then P ( - is an ideal containing P. By 
the minimality of P, (P ( -)  * +      Let t   (P ( -)  * +    Then t     for some p              This implies 
that                * +    which is a contradiction. Now suppose 
y        (  , -)  * +                            Let S (  ( -)  * +    Then S      for some            
     This implies (    )                  , so by theorem 2.6, P is a minimal ideal of S. Therefore, by theorem 3.3, P 
is a prime ideal. 

Conversely, let x, y, z   such that              Suppose for all y, z   we have        Then d * +    Set I = 
{   |                  +  First we claim that I is a proper ideal. Clearly, I is nonempty as                      
Then                     Thus          Hence        Therefore I is an ideal and I is a proper ideal as a    
Again                            Then * +       and hence there is a prime ideal J such that J       * +        
Thus                            Now we claim that either y           If  y, z          , z       As J is a prime ideal, 
then     is a prime filter and y, z      Since     is a filter, there is f     such that f     which is a contradiction. 
Hence either             This implies either                 Thus 0   which is a contradicts the primeness of J. Hence 
       Thus S is a 0-distributive.  
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