0 - DISTRIBUTIVE MEET - SEMILATTICE

A. Afrin Ayesha ${ }^{\mathbf{1}}$, K. Aiswarya ${ }^{2}$
${ }^{1}$ Student, Department of Mathematics, Thassim Beevi Abdul Kader College for Women, Kilakarai, Ramanathapuram, Tamilnadu, India.
${ }^{2}$ Student, Department of Mathematics, Thassim Beevi Abdul Kader College for Women, Kilakarai, Ramanathapuram, Tamilnadu, India.

Abstract

In this paper, we have studied some properties of ideals and filters of a meet-semilattice. We have discussed 0 distributive meet-semilattice and given several characterizations of 0 -distributive meet-semilattices directed below. Finally, we have included a generalization of prime separation theorem in terms of dual annihilators.

Keywords: ideals, meet-semilattice,0-distributive lattice, dual annihilator.

1. Introduction:

Varlet [7] have given the definition of a 0 -sistributive lattice. Then Balasubramani et al [1] have established some results on this topic. A lattice L with 0 is called a 0 -distributive lattice if for all a, $\mathrm{b}, \mathrm{c} \in L$ with a $\wedge b=0=a \wedge c$ imply $\mathrm{a} \wedge(b \vee c)=0$. Any distributive lattice with 0 is 0 - distributive. In this paper we will study the 0 -distributive meetsemilattices.

An ordered set (S, \leq) is said to be a meet - semilattice if inf\{a, b$\}$ exists for all $\mathrm{a}, \mathrm{b} \in S$. we write a $\wedge b$ in place of $\inf \{\mathrm{a}, \mathrm{b}\}$.
A meet- semilattice s is called distributive if $a \geq b_{1} \wedge b_{2}\left(a, b_{1}, b_{2} \in S\right)$
Implies the existence of $a_{1}, a_{2} \in S ; a_{1} \geq b_{1}, a_{2} \geq b_{2}$ with $a=a_{1} \wedge a_{2}$.
For literature on meet- semilattice, we refer the reader to consult Talukder et al [5,6], Noor et 1 [3] and Gratzer [2].
A meet-semilattice S with 0 is said to be 0 -distributive if for any $a, b, c \in S$ such that $a \wedge b=0=a \wedge c$ implies that $a \wedge d=0$ for some $d \geq b, c$.

Both distributive and modular meet-semilattices share a common property "For all $a, b \in S$ there exists $c \in S$ such that $c \geq$ $a, b "$.this property is known as the directed below property. Hence a meet-semilattice with this property is known as a directed below semilattice.

A subset I of a meet-semilattice S is called an upset if $x \in L$ and $y \in S$ with $x \geq y$ implies $y \in L$.
Let S be a meet- semilattice. A non-empty subset F of S is called a filter if
(1) F is an upset, and
(2) $a, b \in F$ implies there exists $d \geq a, b$ such that $d \in F$.

A filter F is called proper filter of a meet- semilattice S if $F \neq S$.
A proper filter (upset) F in S is called a prime filter (upset) if $a \wedge b \in F$
Implies either $a \in F$ or $b \in F$. For $a \in S$, the filter
$\mathrm{F}=\{x \in S \mid x \geq a\}$ is called the principle filter generated by [a). A prime upset (filter) is called a maximal prime upset (filter) if it does not contain any other prime upset (filter).

A subset I of S is called an ideal if
(1) $a, b \in I$ implies $a \wedge b \in I(t t) a \in S, t \in I$ with $a \geq t$ implies
$a \in I$.
An ideal I of a meet-semilattice S is called prime ideal if $I \neq S$ and $s-I$ is a prime filter.
A minimal ideal I of S is a proper ideal which is not contained in any other proper ideal. That is, if there is a proper ideal J such that $J \subseteq I$ then $i=J$.

Let S be a meet-semilattice with 0 . For $S \subseteq A$.
Set $A^{\perp d}=\{x \in S \mid x \wedge a=0 \forall a \in A\}$.Then $A^{\perp d}$ is called the dual annihilator of A. This is always an upset but not necessarily a filter.

For $a \in S$, we denote
$\{a\}^{\perp d}=\{x \in S \mid x \wedge a=0\}$. moreover $A^{\perp d}=\underset{a \in A}{U}\left\{\{a\}^{\perp d}\right\}$.

2. Some properties if ideals and filters of a meet-semilattice

Lemma.2.1

Let S be a meet semilattice with 0 . Then every prime upset contains a maximal prime upset.
Proof:
Let F be a prime upset of S and let A denote the set of all prime upset Q contained in F. Then A is non empty as $F \in A$. Let C be a chain in A and

Let $M=\cup\{X \mid X \in C\}$. We claim that M is a prime upset. M is non empty as $0 \in M$. Let $a \in M$ and $a \geq b$. Then $a \in$ X for all $X \in C$. Hence $b \in X$ for all $X \in C$ as X is an upset.

Thus $b \in M$. Again let $x \wedge y \in M$ for some $x, y \in S$.Then $x \wedge y \in X$ for all $X \in C$. Since X is prime upset, so either $x \in X$ or $y \in$ X this implies either $x \in M$ or $y \in M$. Hence M is a prime upset. Therefore, we can apply to A the dual form of Zorn's lemma to conclude the existence of a maximal member of A.

Lemma.2.2

Let S be a directed below meet-semilattice. Then the union of any two filters of S is also a filter.
Proof:
Let F, Q be two filters of a directed below meet-semilattice S . Let $a \in F \cup Q$ and $b \in S$ with $b \geq a$. Then $a \in F$ and $a \in Q$. Since both F and Q are filters. So $b \in F$ and $b \in Q$. Hence $b \in F \cup Q$. Again let $a, b \in F \cup Q$. So $a, b \in F$ and $a, b \in Q$. Since F and Q are both filters, then there exists $f \in F$ and $q \in Q$ such that $f, q \geq a, b$. Let $C=f \vee q$. Then $c \in F \cup Q$, where $C \geq$ a, b. hence $F \cup Q$ is a filter

Lemma.2.3

Let I be a nonempty proper subset of a meet-semilattice S. Then I is an ideal if and only if S-I is a prime upset.
Proof:
Let I be an ideal of a meet-semilattice S . Now let $x \in S-I$ and
$x \geq y$, then $x \notin I$, so $y \notin I$ as I is an ideal. Hence $y \in S-I$, thus $S-I$ is an upset.Since I is an ideal, so $S-I$ is an upset. Since I is an ideal, so $S-I \neq S$, therefore $S-I$ is a proper upset. Let $a, b \in S$ with $a \wedge b \in S-I$.then $a \wedge b \notin I$. Therefore either $a \notin I$ or $b \notin I$ as I is an ideal. Hence either $a \in S-I$ or $b \in S-I$. Therefore $S-I$ is a prime upset.

Conversely let S-I is a prime upset and $x, y \in I$, then $x, y \notin S-I$.

Thus $x \wedge y \notin S-I$ as S-I is a prime upset. Hence $x \wedge y \in I$.Again, let $x \in I$ and $y \geq x$.then $x \notin S-I$, therefore $y \notin S-$ I as $S-I$ is an upset. Hence $y \in I$ and thus I is an ideal.

Corollary.2.4

Let I be a nonempty subset of a meet-semilattice S. Then I is a minimal ideal if and only if S-I is a maximal prime upset.

Theorem.2.5

Every proper ideal of a meet-semilattice S with 0 is contained in a minimal ideal.
Proof:
Let I be a proper ideal in S with 0 . Let P be the set of all proper ideals containing I . then P is nonempty as $I \in P$. Let C be a chain in P and let $M=\cap\{X \mid X \in C\}$. We claim that M is an ideal with $M \subseteq I$. Let $x \in M$ and $y \geq x$. Then $x \in X$ for some $X \in C$. Hence $Y \in X$ as X is an ideal. Therefore $y \in M$.Again , Let $x, y \in M$, then $x \in X$ and $y \in Y$ for some $x, y \in C$. Since C is a chain, so either $Y \subseteq X$ or $X \subseteq Y$. Suppose $Y \subseteq X$, so $x, y \in Y$, then $x \wedge y \in Y$ as Y is an ideal. Hence $x \wedge y \in M$, moreover I contain M, so M is minimal element of C . then by Zorn's lemma, P maximal element say Q with $Q \subseteq I$.

Now we give a characterization of minimal ideals of a meet-semilattice.

Theorem.2.6

Let S be a meet-semilattice with 0 . A proper ideal M in S is minimal if and only if for any element $a \in S-M$. there exists an element $b \in M$ such that $a \wedge b=0$.

Proof:
Suppose M is minimal and $a \notin M$, let $a \wedge b \neq 0$ for all $b \in M$. Consider $M_{1}=\{y \in S \mid y \geq a \wedge b$ for some $b \in M\}$. Clearly M_{1} is an ideal and is proper as $0 \notin M_{1}$ for every $b \in M$. We have $b \geq a \wedge b$ and so $b \in M_{1}$. Thus $M_{1} \subseteq M$. Also $a \notin M$ but $a \in M_{1}$, so $M_{1} \subset M$,

Which contradicts the minimality of M. Hence there must exists some $b \in M$ such that $a \wedge b=0$.
Conversely, if the proper ideal M is not minimal, then as $0 \in S$, there exists a minimal ideal N such that $N \subset M$, for any element $a \in N-M$. There exists an element $b \in M$ such that $a \wedge b=0$. Hence $a, b \in N$ imply $0=a \wedge b \in N$ which is contradiction. Thus, M must be a minimal ideal.

3. SOME CHARACTERIZATIONS OF 0 - DISTRIBUTIVE MEET SEMILATTICE

In this section, we prove our main results of this paper.

Theorem 3.1

Every 0 - distributive meet semilattice is directed below.
Proof:
Let S be a 0 - distributive meet semilattice and $\mathrm{b}, \mathrm{c} \in S$. Then $\mathrm{a} \wedge \mathrm{b}=0=0 \wedge c$ which implies there exists $\mathrm{d} \in S$ with $\mathrm{d} \geq b, c$ such that a $\wedge d=0$. Thus d is upper bound of b, c. The converse of the above theorem is not true by s_{2} of figure 1.1.

Theorem 3.2

Let $\mathrm{a}, a_{1}, a_{2}, \ldots, a_{n}$ be elements of a 0 - distributive meet semilattice S such that a $\wedge a_{1}=a \wedge a_{2}=\cdots=a \wedge a_{n}=0$. Then a $\wedge b=0$ for some $\mathrm{b} \geq a_{1}, a_{2}, \ldots, a_{n}$.

Proof:
We want to prove this theorem using mathematical induction method.

Let $a \wedge a_{1}=a \wedge a_{2}=0$. Since S is 0 - distributive. So, a $\wedge b_{1}=0$ for some $b_{1} \geq a_{1}, a_{2}$. That is, the statement is true for a_{1} and a_{2}. Let, $a \wedge a_{1}=a \wedge a_{2}=\cdots=a \wedge a_{k-1}=0$.Then for the 0 - distributivity of $\mathrm{S}, a \wedge b_{2}=0$ for some $b_{2} \geq b_{2}, a_{k}$ as S is a 0 - distributive. This implies that a $\wedge b=0$ for some $\mathrm{b} \geq a_{1}, a_{2}, \ldots, a_{k}$. Hence by the method of mathematical induction, the theorem is true for $\mathrm{b} \geq a_{1}, a_{2}, \ldots, a_{n}$. \quad

Following results gives some nice characterization of 0 - distributive meet semilattices.

Theorem 3.3

For a directed below meet semilattice S with 0 , the following conditions are equivalent: i) S is a 0 - distributive. ii) $\{a\}^{\perp d}$ is a filter for all a $\in \mathrm{S}$. iii) $A^{\perp d}$ is a filter for all finite subsets A of S. iv) Every minimal idea is prime.

Proof:
i) \Leftrightarrow ii):

Let $x \in\{a\}^{\perp d}$ and $\mathrm{x} \geq \mathrm{y}$. Since $x \in\{a\}^{\perp d}$, so we get a $\wedge \mathrm{x}=0$ implies a $\wedge \mathrm{y}=0$ as $\mathrm{x} \geq \mathrm{y}$. Hence $y \in\{a\}^{\perp d}$, and so $\{a\}^{\perp d}$ is an upset. Again let $x, y \in\{a\}^{\perp d}$, Thus $\mathrm{a} \wedge x=a \wedge y=0$. By 0 - distributivity of S , there exists z with $\mathrm{z} \geq x, y$ such that $\mathrm{a} \wedge z=$ 0 . Therefore $\mathrm{z} \in\{a\}^{\perp d}$, and so $\{a\}^{\perp d}$ is a filter.

Conversely, let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in S$ with $\mathrm{x} \wedge y=x \wedge z=0$. Then $\mathrm{y}, \mathrm{z} \in\{x\}^{\perp d}$. Since $\{x\}^{\perp d}$ is a filter, so there exists $\mathrm{t} \geq y, z$ such that $\mathrm{t} \in$ $\{x\}^{\perp d}$, and so $\mathrm{t} \wedge x=0$.This implies S is 0 - distributive.
ii) \Leftrightarrow iii):

It is trivial by theorem 2.2 as $A^{\perp d}=\underset{a \in A}{\cup}\{a\}^{\perp d}$.
i) \Rightarrow iv):

Let I be a minimal ideal of S. Then by corollary $2.4, S-I$ is a maximal prime upset. Now suppose $\mathrm{x}, \mathrm{y} \in S-I$. Then $\mathrm{x}, \mathrm{y} \notin I$, and so by the minimality of $\mathrm{I}, I \wedge(x]=S, I \wedge(y]=S$. This implies $\mathrm{a} \wedge x=0=b \wedge y$ for some $\mathrm{a}, \mathrm{b} \in I$. Thus $\mathrm{a} \wedge b \wedge x=a \wedge b \wedge y=$ 0 . Since S is 0 - distributive, there exists $\mathrm{d} \geq x, y$ such that a $\wedge b \wedge d=0$.

Now, a $\wedge b \in I$ implies $a \wedge b \notin S-I$, and $S-I$ is prime implies $\mathrm{d} \in S-I$. Therefore $S-I$ is a prime filter and so I is a prime ideal.
iv) \Rightarrow i):

Let S be not 0 - distributive. Then there are $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{S}$ such that $a \wedge b=0=a \wedge c$ and $a \wedge d \neq 0$ for all $d \geq b, c$. Now, set $I=\{x \in S \mid x \geq a \wedge y, y \geq b, c\}$. Clearly I is an ideal and it proper as $0 \notin I$.By theorem2.5 $I \subseteq J$ for some minimal ideal J. Now we claim that either $\mathrm{b} \in J$ or $c \in J$. If $\mathrm{b}, \mathrm{c} \notin J$, then $b, c \notin S-J$. As J is a prime ideal, then we have $S-J$ is a prime filter and b , c $\in S-J$. Since $S-J$ is a filter, there is $\mathrm{c} \in S-J$ such that $a \leq b, c$. Hence $a \wedge e \in S-J$ gives a contradiction. Hence b $\in J$ or $c \in J$. This implies, either $a \wedge b \in J$ or $a \wedge c \in J$. Thus $0 \in J$ which contradict the minimality of J. Therefore $a \wedge d=0$ for some $d \leq$ b, c and hence S is a 0 -distributive.

Note that in case of a 0 -distributive lattice L, for any $\mathrm{A} \subseteq L, A^{\perp d}$ is a filter. But this is not true in a directed below meet-semi lattice S with 0 , as the union of finite number of filters in S is not necessarily a filter.

Corollary 3.4

In a 0-distributive meet-semi lattice, every proper ideal is contained in a prime ideal.
This immediately follows by theorem 2.5 and theorem 3.3.

Theorem 3.5

In a 0 -distributive meet-semi lattice S if $\{0\} \neq A$ is the union of all filters of S not equal to $\{0\}$. Then $A^{\perp d}=\left\{x \in S \mid\{x\}^{\perp d} \neq\{0\}\right\}$.
Proof:
Let $\mathrm{x} \in A^{\perp d}$. Since $\mathrm{x} \wedge a=0$ for all $a \in A$.Since $\mathrm{A} \neq\{0\}$, so $\{x\}^{\perp d} \neq\{0\}$. Thus $\mathrm{x} \in$ R.H.S. That is $A^{\perp d} \subseteq$ R.H.S.
Conversely, let $\mathrm{x} \in$ R.H.S. So $\{x\}^{\perp d} \neq\{1\}$.Also S is a 0 -distributive. Then $\{x\}^{\perp d}$ is a filter of S . Hence $\mathrm{A} \subseteq\{x\}^{\perp d}$ and so $A^{\perp d} \subseteq\{x\}^{\perp d}$. This implies $\mathrm{x} \in A^{\perp d}$. Thus R.H.S. $\subseteq A^{\perp d}$ which completes the proof.

Finally, we give a necessary and sufficient condition for a meet-semi lattice S with 0,0 be a 0 -distributive which is a generalization of power and et al. [4; Theorem 7].

Theorem 3.6

Let S be a meet-semi lattice with 0 . Then S is 0 -distributive if and only if for any ideal I disjoint with $\{x\}^{\perp d}(x \in S)$, there exists a prime ideal containing I and disjoint with $\{x\}^{\perp d}$.

Proof:
Suppose S is a 0 -distributive meet-semi lattice. Let P be the set of has $\mathrm{I} \in P$. Let C be a chain in P and let $M=\cap\{X \mid x \in C\}$. First we claim that M is an ideal with $\mathrm{M} \subseteq I$ and $M \cup\{x\}^{\perp d}-\emptyset$. Let $\mathrm{x} \in M$ and $x \leq y$. Then $\mathrm{x} \in X$ for some $X \in C$. Hence $\mathrm{y} \in X$ as X is an ideal. Thus $\mathrm{y} \in M$. Again, le $\mathrm{t} \mathrm{x}, \mathrm{y} \in M$. Then $\mathrm{x} \in X$ and $y \in Y$ for some $X, Y \in C$. Since C is a chain, so either $\mathrm{X} \subseteq Y$ or $Y \subseteq X$. Suppose $\mathrm{X} \subseteq Y$, so $x, y \in Y$. Then $x \wedge y \in Y$ as Y is an ideal. Hence $x \wedge y \in M$. Thus M is an ideal. Moreover, I contain M and $\mathrm{MU}\{x\}^{\perp d}=\varnothing$. Then by Zorn's lemma, there exists a minimal element Qin P. Hence by Zorn's lemma as in theorem 2.5 , there exists a minimal ideal I containing P and disjoint from $\{x\}^{\perp d}$. We claim that $\mathrm{x} \in P$. If not, then $\mathrm{P} \wedge(x]$ is an ideal containing P . By the minimality of $\mathrm{P},(\mathrm{P} \wedge(x]) \cup\{x\}^{\perp d}=\varnothing$. Let $\mathrm{t} \in(\mathrm{P} \wedge(x]) \cup\{x\}^{\perp d}$. Then $\mathrm{t} \leq p \wedge x$ for some $\mathrm{p} \in P$ and $t \wedge x=0$. This implies that $p \wedge x=0$ and so $p \in\{x\}^{\perp d}$, which is a contradiction. Now suppose
$\mathrm{y} \notin P$.Then $(P \wedge[y]) \cap\{x\}^{\perp d} \neq \emptyset$ bythe minimality of P. Let $S \in(P \wedge(y]) \cup\{x\}^{\perp d}$. Then $S \leq p_{1} \wedge y$ for some $p_{1} \in P$ and $S \wedge$ $x=0$. This implies $\left(p_{1} \wedge x\right) \wedge y=0$. Since $p_{1} \wedge x \in P$, so by theorem 2.6, P is a minimal ideal of S . Therefore, by theorem 3.3, P is a prime ideal.
Conversely, let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in S$ such that $x \wedge y=0, x \wedge z=0$. Suppose for all $\mathrm{y}, \mathrm{z} \leq d$ we have $x \wedge d \neq 0$. Then $\mathrm{d} \notin\{x\}^{\perp d}$. Set $\mathrm{I}=$ $\{a \in S \mid a \leq x \wedge a$, for alla $\leq y, z\}$. First we claim that I is a proper ideal. Clearly, I is nonempty as $x \in I$. Let $p \in I$ and $p \leq q$. Then $p \leq x \wedge a$ and so $q \leq x \wedge a$. Thus $p \wedge q \leq x \wedge a$. Hence $p \wedge q \in I$. Therefore I is an ideal and I is a proper ideal as a \notin. Again $x \in I$ and $a \in I$ for all $a \leq y, z$. Then $\{x\}^{\perp d} \cup I=\varnothing$ and hence there is a prime ideal J such that $\mathrm{J} \subseteq I$ and $\{x\}^{\perp d} \cup J=\varnothing$. Thus $x \in J$ and $a \in J$ for all $a \leq y, z$. Now we claim that either $\mathrm{y} \in J$ or $z \in J$. If $\mathrm{y}, \mathrm{z} \notin J$ then $y, \mathrm{z} \in S-J$. As J is a prime ideal, then $S-J$ is a prime filter and $\mathrm{y}, \mathrm{z} \in S-J$. Since $S-J$ is a filter, there is $\mathrm{f} \in S-J$ such that $\mathrm{f} \leq y, z$ which is a contradiction. Hence either $y \in J$ or $z \in J$. This implies either $x \wedge y \in J$ or $x \wedge z \in J$. Thus $0 \in J$ which is a contradicts the primeness of J . Hence $x \wedge d=0$. Thus S is a 0 -distributive.

4. References

1) Balasubramani, P. and Venkatanarasimhan, P. v., Characterizations of the 0-Distributive Lattice, Indian J. pure appl. Math. 32(3) 315-324, (2001).
2) Gratzer, G., Lattice Theory, First Concepts and Distributive Lattices < San Francisco W. H. Freeman, (1971).
3) Noor, A. S. A. and Talukder, M. R., Isomorphism theorem for standard ideals of a join semilattice directed below, Southeast Asian. Bull. Of Math. 32, 489-495 (2008).
4) Pawar, Y. S. and Thakare, N. K., 0-Distributive Semilattices, Canad. Math. Bull. Vol. 21(4), 469-475 (1978).
5) Talukder, M. R. and Noor, A. S. A., Standard ideals of a join semilattice directed below, Southeast Asian Bull. Of Math,22, 135139 (1997).

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 07 Issue: 02 | Feb 2020 www.irjet.net
6) Talukder, M. R. and Noor, A. S. A., Modular ideals of a join semilattice directed below, Southeast Asian Bull. Of Math. 23, 1837 (1998).
7) Varlet, J. C. Distributive semilattices and Boolean Lattices, Bull. Soc. Roy. Liege, 41, 5-10 (1972).

