

www.irjet.net

0 – DISTRIBUTIVE MEET – SEMILATTICE

A. Afrin Ayesha¹, K. Aiswarya²

¹Student, Department of Mathematics, Thassim Beevi Abdul Kader College for Women, Kilakarai, Ramanathapuram, Tamilnadu, India. ²Student, Department of Mathematics, Thassim Beevi Abdul Kader College for Women, Kilakarai, Ramanathapuram, Tamilnadu, India.

Abstract: In this paper, we have studied some properties of ideals and filters of a meet-semilattice. We have discussed 0-distributive meet-semilattice and given several characterizations of 0-distributive meet-semilattices directed below. Finally, we have included a generalization of prime separation theorem in terms of dual annihilators.

Keywords: ideals, meet-semilattice,0-distributive lattice, dual annihilator.

1. Introduction:

Varlet [7] have given the definition of a 0-sistributive lattice. Then Balasubramani et al [1] have established some results on this topic. A lattice L with 0 is called a 0-distributive lattice if for all a, b, $c \in L$ with a $\land b = 0 = a \land c$ imply a $\land (b \lor c) = 0$. Any distributive lattice with 0 is 0 – distributive. In this paper we will study the 0-distributive meet-semilattices.

An ordered set (S, \leq) is said to be a meet – semilattice if $\inf\{a, b\}$ exists for all $a, b \in S$.we write $a \land b$ in place of $\inf\{a, b\}$.

A meet- semilattice s is called distributive if $a \ge b_1 \land b_2(a, b_1, b_2 \in S)$

Implies the existence of $a_1, a_2 \in S$; $a_1 \ge b_1$, $a_2 \ge b_2$ with $a = a_1 \land a_2$.

For literature on meet- semilattice, we refer the reader to consult Talukder et al [5,6], Noor et I [3] and Gratzer [2].

A meet-semilattice S with 0 is said to be 0-distributive if for any $a, b, c \in S$ such that $a \wedge b = 0 = a \wedge c$ implies that $a \wedge d = 0$ for some $d \ge b, c$.

Both distributive and modular meet-semilattices share a common property "For all $a, b \in S$ there exists $c \in S$ such that $c \ge a, b$ ".this property is known as the directed below property. Hence a meet-semilattice with this property is known as a directed below semilattice.

A subset I of a meet-semilattice S is called an upset if $x \in L$ and $y \in S$ with $x \ge y$ implies $y \in L$.

Let S be a meet- semilattice. A non-empty subset F of S is called a filter if

(1) F is an upset, and

(2) $a, b \in F$ implies there exists $d \ge a, b$ such that $d \in F$.

A filter F is called proper filter of a meet- semilattice S if $F \neq S$.

A proper filter (upset) F in S is called a prime filter (upset) if $a \land b \in F$

Implies either $a \in F$ or $b \in F$. For $a \in S$, the filter

F = { $x \in S | x \ge a$ } is called the principle filter generated by [a). A prime upset (filter) is called a maximal prime upset (filter) if it does not contain any other prime upset (filter).

A subset I of S is called an ideal if

(1) $a, b \in I$ implies $a \land b \in I(tt) \ a \in S, t \in I$ with $a \ge t$ implies

$a \in I$.

An ideal I of a meet-semilattice S is called prime ideal if $I \neq S$ and s - I is a prime filter.

A minimal ideal I of S is a proper ideal which is not contained in any other proper ideal. That is, if there is a proper ideal J such that $J \subseteq I$ then i = J.

Let S be a meet-semilattice with 0. For $S \subseteq A$.

Set $A^{\perp d} = \{x \in S | x \land a = 0 \forall a \in A\}$. Then $A^{\perp d}$ is called the dual annihilator of A. This is always an upset but not necessarily a filter.

For $a \in S$, we denote

 $\{a\}^{\perp d} = \{x \in S | x \land a = 0\}. moreover A^{\perp d} = \bigcup_{a \in A} \{\{a\}^{\perp d}\}.$

2. Some properties if ideals and filters of a meet-semilattice

Lemma.2.1

Let S be a meet semilattice with 0. Then every prime upset contains a maximal prime upset.

Proof:

Let F be a prime upset of S and let A denote the set of all prime upset Q contained in F. Then A is non empty as $F \in A$. Let C be a chain in A and

Let $M = \bigcup \{X \mid X \in C\}$. We claim that M is a prime upset. M is non empty as $0 \in M$.Let $a \in M$ and $a \ge b$.Then $a \in X$ for all $X \in C$. Hence $b \in X$ for all $X \in C$ as X is an upset.

Thus $b \in M$. Again let $x \land y \in M$ for some $x, y \in S$. Then $x \land y \in X$ for all $X \in C$. Since X is prime upset, so either $x \in X$ or $y \in X$ this implies either $x \in M$ or $y \in M$. Hence M is a prime upset. Therefore, we can apply to A the dual form of Zorn's lemma to conclude the existence of a maximal member of A.

Lemma.2.2

Let S be a directed below meet-semilattice. Then the union of any two filters of S is also a filter.

Proof:

Let F, Q be two filters of a directed below meet-semilattice S. Let $a \in F \cup Q$ and $b \in S$ with $b \ge a$. Then $a \in F$ and $a \in Q$. Since both F and Q are filters. So $b \in F$ and $b \in Q$. Hence $b \in F \cup Q$. Again let $a, b \in F \cup Q$. So $a, b \in F$ and $a, b \in Q$. Since F and Q are both filters, then there exists $f \in F$ and $q \in Q$ such that $f, q \ge a, b$. Let $C = f \lor q$. Then $c \in F \cup Q$, where $C \ge a, b$. hence $F \cup Q$ is a filter.

Lemma.2.3

Let I be a nonempty proper subset of a meet-semilattice S. Then I is an ideal if and only if S-I is a prime upset.

Proof:

Let I be an ideal of a meet-semilattice S. Now let $x \in S - I$ and

 $x \ge y$, then $x \notin I$, so $y \notin I$ as I is an ideal. Hence $y \in S - I$, thus S - I is an upset. Since I is an ideal, so S - I is an upset. Since I is an ideal, so $S - I \ne S$, therefore S - I is a proper upset. Let $a, b \in S$ with $a \land b \in S - I$. then $a \land b \notin I$. Therefore either $a \notin I$ or $b \notin I$ as I is an ideal. Hence either $a \in S - I$ or $b \in S - I$. Therefore S - I is a prime upset.

Conversely let S-I is a prime upset and $x, y \in I$, then $x, y \notin S - I$.

Thus $x \land y \notin S - I$ as S-I is a prime upset. Hence $x \land y \in I$. Again, let $x \in I$ and $y \ge x$. then $x \notin S - I$, therefore $y \notin S - I$ as S - I is an upset. Hence $y \in I$ and thus I is an ideal.

Corollary.2.4

Let I be a nonempty subset of a meet-semilattice S. Then I is a minimal ideal if and only if S-I is a maximal prime upset.

Theorem.2.5

Every proper ideal of a meet-semilattice S with 0 is contained in a minimal ideal.

Proof:

Let I be a proper ideal in S with 0. Let P be the set of all proper ideals containing I. then P is nonempty as $I \in P$. Let C be a chain in P and let $M = \cap \{X | X \in C\}$. We claim that M is an ideal with $M \subseteq I$. Let $x \in M$ and $y \ge x$. Then $x \in X$ for some $X \in C$. Hence $Y \in X$ as X is an ideal. Therefore $y \in M$. Again , Let $x, y \in M$, then $x \in X$ and $y \in Y$ for some $x, y \in C$. Since C is a chain, so either $Y \subseteq X$ or $X \subseteq Y$. Suppose $Y \subseteq X$, so $x, y \in Y$, then $x \land y \in Y$ as Y is an ideal. Hence $x \land y \in M$, moreover I contain M, so M is minimal element of C. then by Zorn's lemma, P maximal element say Q with $Q \subseteq I$.

Now we give a characterization of minimal ideals of a meet-semilattice.

Theorem.2.6

Let S be a meet-semilattice with 0. A proper ideal M in S is minimal if and only if for any element $a \in S - M$. there exists an element $b \in M$ such that $a \wedge b = 0$.

Proof:

Suppose M is minimal and $a \notin M$, let $a \land b \neq 0$ for all $b \in M$. Consider $M_1 = \{y \in S | y \ge a \land b \text{ for some } b \in M\}$. Clearly M_1 is an ideal and is proper as $0 \notin M_1$ for every $b \in M$. We have $b \ge a \land b$ and so $b \in M_1$. Thus $M_1 \subseteq M$. Also $a \notin M$ but $a \in M_1$, so $M_1 \subset M$,

Which contradicts the minimality of M. Hence there must exists some $b \in M$ such that $a \wedge b = 0$.

Conversely, if the proper ideal M is not minimal, then as $0 \in S$, there exists a minimal ideal N such that $N \subset M$, for any element $a \in N - M$. There exists an element $b \in M$ such that $a \land b = 0$. Hence $a, b \in N$ imply $0 = a \land b \in N$ which is contradiction. Thus, M must be a minimal ideal.

3. SOME CHARACTERIZATIONS OF 0 – DISTRIBUTIVE MEET SEMILATTICE

In this section, we prove our main results of this paper.

Theorem 3.1

Every 0 – distributive meet semilattice is directed below.

Proof:

Let S be a 0 – distributive meet semilattice and b, $c \in S$. Then $a \land b = 0 = 0 \land c$ which implies there exists $d \in S$ with $d \ge b, c$ such that $a \land d = 0$. Thus d is upper bound of b, c. The converse of the above theorem is not true by s_2 of figure 1.1.

Theorem 3.2

Let a, $a_1, a_2, ..., a_n$ be elements of a 0 – distributive meet semilattice S such that a $\land a_1 = a \land a_2 = \cdots = a \land a_n = 0$. Then a $\land b = 0$ for some b $\ge a_1, a_2, ..., a_n$.

Proof:

We want to prove this theorem using mathematical induction method.

Let $a \wedge a_1 = a \wedge a_2 = 0$. Since S is 0 – distributive. So, $a \wedge b_1 = 0$ for some $b_1 \ge a_1, a_2$. That is, the statement is true for a_1 and a_2 . Let, $a \wedge a_1 = a \wedge a_2 = \cdots = a \wedge a_{k-1} = 0$. Then for the 0 – distributivity of S, $a \wedge b_2 = 0$ for some $b_2 \ge b_2$, a_k as S is a 0 – distributive. This implies that a $\wedge b = 0$ for some $b \ge a_1 a_2, \dots, a_k$. Hence by the method of mathematical induction, the theorem is true for $b \ge a_1 a_2, ..., a_n$.

Following results gives some nice characterization of 0 – distributive meet semilattices.

Theorem 3.3

For a directed below meet semilattice S with 0, the following conditions are equivalent: i) S is a 0 – distributive. ii) $\{a\}^{\perp d}$ is a filter for all $a \in S$. iii) $A^{\perp d}$ is a filter for all finite subsets A of S. iv) Every minimal idea is prime.

Proof:

i)⇔ii):

Let $x \in \{a\}^{\perp d}$ and $x \ge y$. Since $x \in \{a\}^{\perp d}$, so we get $a \land x = 0$ implies $a \land y = 0$ as $x \ge y$. Hence $y \in \{a\}^{\perp d}$, and so $\{a\}^{\perp d}$ is an upset. Again let $x, y \in \{a\}^{\perp d}$, Thus $a \land x = a \land y = 0$. By 0 – distributivity of S, there exists z with $z \ge x, y$ such that $a \land z =$ 0. Therefore $z \in \{a\}^{\perp d}$, and so $\{a\}^{\perp d}$ is a filter.

Conversely, let x, y, $z \in S$ with $x \land y = x \land z = 0$. Then y, $z \in \{x\}^{\perp d}$. Since $\{x\}^{\perp d}$ is a filter, so there exists $t \ge y, z$ such that $t \in Y$. $\{x\}^{\perp d}$, and so tA x = 0. This implies S is 0 – distributive.

ii) ⇔iii):

It is trivial by theorem 2.2 as $A^{\perp d} = \bigcup_{a \in A} \{a\}^{\perp d}$.

i) \Rightarrow iv):

Let I be a minimal ideal of S. Then by corollary 2.4, S - I is a maximal prime upset. Now suppose x, $y \in S - I$. Then x, $y \notin I$, and so by the minimality of I, $I \land (x] = S$, $I \land (y] = S$. This implies $a \land x = 0 = b \land y$ for some a, $b \in I$. Thus $a \land b \land x = a \land b \land y = a \land b \land$ 0. Since S is 0 – distributive , there exists $d \ge x, y$ such that $a \land b \land d = 0$.

Now, a $\land b \in I$ implies $a \land b \notin S - I$, and S - I is prime implies $d \in S - I$. Therefore S - I is a prime filter and so I is a prime ideal.

iv)⇒i):

Let S be not 0 – distributive. Then there are a, b, $c \in S$ such that $a \wedge b = 0 = a \wedge c$ and $a \wedge d \neq 0$ for all $d \geq b$, c. Now, set $I = \{x \in S | x \ge a \land y, y \ge b, c\}$. Clearly I is an ideal and it proper as $0 \notin I$. By theorem 2.5 $I \subseteq I$ for some minimal ideal J. Now we claim that either $b \in J$ or $c \in J$. If $b, c \notin J$, then $b, c \notin S - J$. As J is a prime ideal, then we have S - J is a prime filter and b, c $\in S - J$. Since S - J is a filter, there is $c \in S - J$ such that $a \leq b, c$. Hence $a \wedge e \in S - J$ gives a contradiction. Hence $b \in J$ or $c \in J$. This implies, either $a \land b \in J$ or $a \land c \in J$. Thus $0 \in J$ which contradict the minimality of J. Therefore $a \land d = 0$ for some $d \leq J$. b, c and hence S is a 0-distributive.■

Note that in case of a 0-distributive lattice L, for any $A \subseteq L$, $A^{\perp d}$ is a filter. But this is not true in a directed below meet-semi lattice S with 0, as the union of finite number of filters in S is not necessarily a filter.

Corollary 3.4

In a 0-distributive meet-semi lattice, every proper ideal is contained in a prime ideal.

This immediately follows by theorem 2.5 and theorem 3.3.

Theorem 3.5

In a 0-distributive meet-semi lattice S if $\{0\} \neq A$ is the union of all filters of S not equal to $\{0\}$. Then $A^{\perp d} = \{x \in S | \{x\}^{\perp d} \neq \{0\}\}$.

Proof:

Let $x \in A^{\perp d}$. Since $x \wedge a = 0$ for all $a \in A$. Since $A \neq \{0\}$, so $\{x\}^{\perp d} \neq \{0\}$. Thus $x \in R$. *H*. *S*. That is $A^{\perp d} \subseteq R$. *H*. *S*.

Conversely, let $x \in R.H.S.$ So $\{x\}^{\perp d} \neq \{1\}$. Also S is a 0-distributive. Then $\{x\}^{\perp d}$ is a filter of S. Hence $A \subseteq \{x\}^{\perp d}$ and so $A^{\perp d} \subseteq \{x\}^{\perp d}$. This implies $x \in A^{\perp d}$. Thus R.H.S. $\subseteq A^{\perp d}$ which completes the proof.

Finally, we give a necessary and sufficient condition for a meet-semi lattice S with 0, 0 be a 0-distributive which is a generalization of power and et al. [4; Theorem 7].

Theorem 3.6

Let S be a meet-semi lattice with 0. Then S is 0-distributive if and only if for any ideal I disjoint with $\{x\}^{\perp d}$ ($x \in S$), there exists a prime ideal containing I and disjoint with $\{x\}^{\perp d}$.

Proof:

Suppose S is a 0-distributive meet-semi lattice. Let P be the set of has $I \in P$. Let C be a chain in P and let $M = \bigcap\{X | x \in C\}$. First we claim that M is an ideal with $M \subseteq I$ and $M \cup \{x\}^{\perp d} - \emptyset$. Let $x \in M$ and $x \leq y$. Then $x \in X$ for some $X \in C$. Hence $y \in X$ as X is an ideal. Thus $y \in M$. Again, let $x, y \in M$. Then $x \in X$ and $y \in Y$ for some $X, Y \in C$. Since C is a chain, so either $X \subseteq Y$ or $Y \subseteq X$. Suppose $X \subseteq Y$, so $x, y \in Y$. Then $x \land y \in Y$ as Y is an ideal. Hence $x \land y \in M$. Thus M is an ideal. Moreover, I contain M and $M \cup \{x\}^{\perp d} = \emptyset$. Then by Zorn's lemma, there exists a minimal element Qin P. Hence by Zorn's lemma as in theorem 2.5, there exists a minimal ideal I containing P and disjoint from $\{x\}^{\perp d}$. We claim that $x \in P$. If not, then $P \land (x]$ is an ideal containing P. By the minimality of P, $(P \land (x]) \cup \{x\}^{\perp d} = \emptyset$. Let $t \in (P \land (x]) \cup \{x\}^{\perp d}$. Then $t \leq p \land x$ for some $p \in P$ and $t \land x = 0$. This implies that $p \land x = 0$ and so $p \in \{x\}^{\perp d}$, which is a contradiction. Now suppose

 $y \notin P$. Then $(P \land [y]) \cap \{x\}^{\perp d} \neq \emptyset$ by the minimality of P. Let $S \in (P \land (y]) \cup \{x\}^{\perp d}$. Then $S \le p_1 \land y$ for some $p_1 \in P$ and $S \land x = 0$. This implies $(p_1 \land x) \land y = 0$. Since $p_1 \land x \in P$, so by theorem 2.6, P is a minimal ideal of S. Therefore, by theorem 3.3, P is a prime ideal.

Conversely, let x, y, $z \in S$ such that $x \wedge y = 0$, $x \wedge z = 0$. Suppose for all y, $z \leq d$ we have $x \wedge d \neq 0$. Then $d \notin \{x\}^{\perp d}$. Set $I = \{a \in S | a \leq x \wedge a, for all a \leq y, z\}$. First we claim that I is a proper ideal. Clearly, I is nonempty as $x \in I$. Let $p \in I$ and $p \leq q$. Then $p \leq x \wedge a$ and so $q \leq x \wedge a$. Thus $p \wedge q \leq x \wedge a$. Hence $p \wedge q \in I$. Therefore I is an ideal and I is a proper ideal as $a \notin I$. Again $x \in I$ and $a \in I$ for all $a \leq y, z$. Then $\{x\}^{\perp d} \cup I = \emptyset$ and hence there is a prime ideal J such that $J \subseteq I$ and $\{x\}^{\perp d} \cup J = \emptyset$. Thus $x \in J$ and $a \in J$ for all $a \leq y, z$. Now we claim that either $y \in J$ or $z \in J$. If $y, z \notin J$ then $y, z \in S - J$. As J is a prime ideal, then S - J is a prime filter and $y, z \in S - J$. Since S - J is a filter, there is $f \in S - J$ such that $f \leq y, z$ which is a contradiction. Hence either $y \in J$ or $z \in J$. This implies either $x \wedge y \in J$ or $x \wedge z \in J$. Thus $0 \in J$ which is a contradicts the primeness of J. Hence $x \wedge d = 0$. Thus S is a 0-distributive.

4. References

1) Balasubramani, P. and Venkatanarasimhan, P. v., Characterizations of the 0-Distributive Lattice, Indian J. pure appl. Math. 32(3) 315-324, (2001).

2) Gratzer, G., Lattice Theory, First Concepts and Distributive Lattices < San Francisco W. H. Freeman, (1971).

3) Noor, A. S. A. and Talukder, M. R., Isomorphism theorem for standard ideals of a join semilattice directed below, Southeast Asian. Bull. Of Math. 32, 489-495 (2008).

4) Pawar, Y. S. and Thakare, N. K., 0-Distributive Semilattices, Canad. Math. Bull. Vol. 21(4), 469-475 (1978).

5) Talukder, M. R. and Noor, A. S. A., Standard ideals of a join semilattice directed below, Southeast Asian Bull. Of Math, 22, 135-139 (1997).

6) Talukder, M. R. and Noor, A. S. A., Modular ideals of a join semilattice directed below, Southeast Asian Bull. Of Math. 23, 18-37 (1998).

7) Varlet, J. C. Distributive semilattices and Boolean Lattices, Bull. Soc. Roy. Liege, 41, 5-10 (1972).