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Abstract: In this article we noticed about the direct product of soft hyper lattices. Also, we give some definition and theorem 
related to the poset. 
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I. Introduction: 

               In this chapter, we introduce the concept of direct product of soft hyper lattice and we prove that the direct product of 
any two distributive soft hyper lattice is a soft lattice and the direct product of any two modular soft hyper lattices is a 
modular soft lattice. 

II. Preliminaries: 

 2.1. Definition: 

                     Let L S(U) and ˅ and ˄ be two binary operations on L. is equipped with two commutative and associative binary 
operations ˅ and ˄ which are connected by absorption law, then algebraic structure (L, ˅, ˄) is called soft lattice. 

2.2. Definition: 

               A distributive lattice is a lattice in which ˅ and ˄ distributive over each other in for all x, y, z in lattice the distributivity 
laws are satisfied: 

1. x ˅ (y˄z) = (x˅y) ˄ (x˅z) 
2. x ˄ (y˅z) = (x˄y) ˅ (x˄z) 

2.3. Definition: 

             A modular lattice is any lattice which satisfies the modular law.  

                           M: x ≤ y → x ˅ (y˄z) ≈ y ˄ (x˅z) 

               The modular law is obviously equivalent to the identity.  

                           (x˄y) ˅ (y˄z) ≈ y ˄ ((x˄y) ˅ z) 

 Since a ≤ b holds iff a = a˄b. Also, it is not difficult to see that every lattice satisfies  

                          x ≤ y → x ˅ (y˄z) ≤ y ˄ (x˅z) 

So, to verify the modular law it suffices to check implication, 

                  x ≤ y → y ˄ (x˅z) ≤ x ˅ (y˄z)        

2.4. Definition: 

          A relation R on a set S is called partial order  

 Reflexive  
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 Antisymmetric 
 Transitive   

        A set S together with a partial ordering R is called poset. Using notation,  

                       a ˂ b when (a, b)   R 

                       a   b when (a, b)   R, a ≠ b 

2.5. Definition: 

               (L, ˅, ˄) is a hyper lattice. For all a, b, c   L 

1. a   a ˅ a, a ˄ a = a  
2. a ˅ b = b ˅ a, a ˄ b = b ˄ a 
3. (a ˅ b) ˅ c = a ˅ (b ˅ c) 

(a ˄ b) ˄ c = a ˄ (b ˄ c) 
4. a   [a˄ (a ˅ b)]   [a˅ (a ˄ b)] 
5. a   a ˅ b   a ˄ b = b 

III. Main Result: 

3.1. Theorem 

           Let (R, ˅, ˄) and (S, ˅, ˄) be two soft hyper lattices then (R×S, ˅, ˄) is a soft hyper lattice. 

   Proof:                 

          We have to prove that binary operations ˅ and ˄ defined on R×S satisfies. 

1. a   a ˅ a, a ˄ a = a  
2. a ˅ b = b ˅ a, a ˄ b = b ˄ a 
3. (a ˅ b) ˅ c = a ˅ (b ˅ c) 

(a ˄ b) ˄ c = a ˄ (b ˄ c) 
4. a   [a˄ (a ˅ b)]   [a˅ (a ˄ b)] 
5. a   a ˅ b   a ˄ b = b 

let, (g  , g  ), (g    g  ) and (g    g  )   R×S  

then,  

i. (g  , g  ) ˅ (g    g  ) = (g   ˅ g  )  (g   ˅ g  )             

                                = (g  , g  ) 

Similarly, we get  

                    (g  , g  ) ˄ (g    g  ) = (g  , g  ) 

ii. (g  , g  ) ˅ (g    g  ) = (g   ˅ g  , g   ˅ g  ) 

                                             = (g   ˅ g  , g   ˅ g  ) 

                                             = (g    g  ) ˅ (g  , g  )          
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Similarly, we get  

            (g  , g  ) ˄ (g    g  ) = (g    g  ) ˄ (g  , g  )  

iii. ((g  , g  ) ˅ (g    g  )) ˅ (g  , g  ) = (g  , g  ) ˅ (g   ˅ g  , g   ˅ g  ) 

                                                                   = (g   ˅ (g   ˅ g  ), g   ˅ (g   ˅ g    ) 

                                                                   = ((g   ˅ g  ) ˅ g    (g   ˅ g  ) ˅ g   ) 

                                                                   = (g   ˅ g  ), (g   ˅ g  ) ˅ (g  , g  ) 

                                                                   = (g  , g  ) ˅ (g    g  ) ˅ (g  , g  ) 

Similarly, we get  

              ((g  , g  ) ˄ (g    g  )) ˄ (g  , g  ) = (g  , g  ) ˄ (g    g  ) ˄ (g  , g  ) 

iv. (g  , g  ) ˅ ((g  , g  ) ˄ (g    g  )) = (g  , g  ) ˅ (g   ˄ g  , g   ˄ g  ) 

                                                                  = (g   ˅ (g   ˄ g  ), g   ˅ (g   ˄ g  )) 

                                                              = (g  , g  )    

Similarly, we get      

                 (g  , g  ) ˄ ((g  , g  ) ˅ (g    g  )) = (g  , g  )    

v. (g  , g  )   [(g  , g  ) ˅ (g    g  )] =  (g  , g  ) ˄ (g    g  ) 

                                                          = (g    g  ) 

Thus (R×S, ˅, ˄) is a soft hyper lattice. 

3.2. Theorem: 

Let (R,   ) and (S,   ) be two soft hyper lattices. Define a relation ≤ on R×S as follows: for  

(g  , g  ) and (g    g  )   R×S (g  , g  ) ≤ (g    g  ) if and only if g      g   and 

g     g  . Then (R×S, ≤) is a soft hyper lattice. 

Proof:  

               First, we claim that ≤ is a partial order on R×S.  

    Let (R,   ) and (S,   ) be two soft hyper lattices, (g  , g  ), (g    g  ) and (g    g  )   R×S. Then g  , g  , g     R and g  , 
g  , g     S. 

i. Since g     g   and g     g   we get (g  , g  ) ≤ (g  , g  ). 

        Therefore, ≤ is reflexive. 

ii. Suppose (g  , g  ) ≤ (g  , g  ) and (g  , g  ) ≤ (g  , g  ). 

Then g      g   and g     g  . Also, g     g   and g     g  . 

Since g  , g     R, g      g   and g     g  , we get g   = g  . 
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Since g  , g     S, g      g   and g     g  , we get g   = g  . 

Thus (g  , g  ) = (g  , g  ). 

Hence ≤ is anti-symmetric. 

iii. Suppose (g  , g  ) ≤ (g  , g  ) and (g  , g  ) ≤ (g    g  ). 

Then g      g   and g      g  . Also, g     g   and g     g  . 

Since g  , g  , g     R, g      g   and g     g  , we get , g     g  . 

Since g  , g  , g     S, g      g   and g     g  , we get g     g  . 

Thus (g  , g  ) ≤ (g  , g  ). 

Hence ≤ is transitive.  

Therefore, (R×S, ≤) is a poset. 

Now, we have to prove that l.u.b {(g  , g  ), (g  , g  )} and g.l.b{(g  , g  ), (g  , g  )}  

exist in R×S.  

Since R and S are soft hyper lattices, g   ≤ g   ˅ g   and g   ≤ g   ˅ g  . 

Therefore, (g  , g  ) ≤ (g   ˅ g  , g   ˅ g  ) 

                                   = (g  , g  ) ˅ (g  , g  ). 

Similarly, (g  , g  ) ≤ (g   ˅ g  , g   ˅ g  ) 

                                   = (g  , g  ) ˅ (g  , g  ). 

Thus (g  , g  ) ˅ (g  , g  ) is an upper bound of {(g  , g  ), (g  , g  )}. 

Suppose (g  , g  ) is an upper bound for {(g  , g  ), (g  , g  )}. 

Then (g  , g  ) ≤ (g  , g  ) and (g  , g  ) ≤ (g  , g  ). 

Therefore, g   ≤ g   and g   ≤ g  . Also, g   ≤ g   and g   ≤ g  . 

That is, g   ≤ g   and g   ≤ g  , and g   ≤ g   and g   ≤ g  . 

Since R and S are soft hyper lattices, g   ˅ g   ≤ g   and g   ˅ g   ≤ g  . 

That is, (g   ˅ g  , g   ˅ g  ) ≤ (g  , g  ). 

Thus (g  , g  ) ˅ (g  , g  ) ≤ (g  , g  ). 

Hence (g  , g  ) ˅ (g  , g  ) is the least upper bound of {(g  , g  ), (g  , g  )}. 

Similarly, we can prove that (g  , g  ) ˄ (g  , g  ) is the greatest lower bound of  

{(g  , g  ), (g  , g  )}. 

Thus l.u.b {(g  , g  ), (g  , g  )} and g.l.b {(g  , g  ), (g  , g  )} exist for every 

(g  , g  ) and (g  , g  ) in R×S.  
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Hence (R×S, ≤) is a soft hyper lattice. (g  , g  ) ˅ (g  , g  ). 

IV. Direct Product of distributive and Modular Soft hyper Lattices 

4.1. Theorem:  

                            Two soft hyper lattices R and S are distributive if and only if R×S is a  

          distributive soft hyper lattice. 

           Proof:  

                   Let R and S be two distributive soft hyper lattices. Let (g  , g  ), (g  , g  ) and                           

              (g  , g  )   R×S. Then g  , g  , g     R and g  , g  , g     S. 

            Since R and S are distributive soft hyper lattices, we get  

                           g   ˅ (g   ˄ g  ) = (g   ˅ g  ) ˄ (g  ˅ g  ) and                   

                           g   ˅ (g   ˄ g  ) = (g   ˅ g    ˄ (g   ˅ g  ). 

           Now (g  , g  ) ˅ ((g  , g  ) ˄ (g    g  )) 

                                                        = (g  , g  ) ˅ (g   ˄ g  , g   ˄ g  ) 

                                                        = (g   ˅ (g   ˄ g  ), g   ˅ (g   ˄ g  )) 

                         = ((g   ˅ g  ) ˄ (g  ˅ g  ), (g   ˅ g    ˄ (g   ˅ g  )) 

                             = (g   ˅ g  , g   ˅ g  ) ˄ (g   ˅ g  , g   ˅ g  ) 

                             = ((g  , g  ) ˅ (g  , g  )) ˄ ((g  , g  ) ˅ (g  , g  )) 

Therefore, R×S is a distributive soft hyper lattice.  

 Conversely, let R×S be a distributive soft hyper lattice.  

 We have to prove that both R and S are distributive soft hyper lattices. 

  Let g  , g  , g     R and g  , g  , g     S.  

 Then (g  , g  ), (g    g  ) and (g    g  )   R×S. Since R×S is a distributive soft hyper lattice,  

(g  , g  ) ˅ (g    g  ) ˄ (g    g  )  = ((g  , g  ) ˅ (g    g  )) ˄ ((g  , g  ) ˅ (g    g  ))   

  (g  , g  ) ˅ (g   ˄ g  , g   ˄ g  ) =  (g   ˅ g  , g   ˅ g  ) ˄ (g   ˅ g  , g   ˅ g  ) 

  (g   ˅ (g   ˄ g  ), g   ˅ (g   ˄ g  ))  

                                                        = ((g   ˅ g  ) ˄ (g  ˅ g  ), (g   ˅ g    ˄ (g   ˅ g  ))  

  g   ˅ (g   ˄ g  ) = (g   ˅ g  ) ˄ (g  ˅ g  ) and  

                                         g   ˅ (g   ˄ g  ) = (g   ˅ g    ˄ (g   ˅ g  ).  

Thus, R and S are distributive soft hyper lattices. 
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4.2. Theorem: 

                 Two soft hyper lattices R and S are modular if and only if R×S is a modular soft hyper lattice.  

Proof: 

           Let R and S be two modular soft hyper lattices. Let (g  , g  ), (g    g  ) and (g    g  )   R×S.  

Suppose (g  , g  ) ≤ (g    g  ). 

Then g  , g  , g     R. Since R is a modular soft hyper lattice and g   ≤ g  ,   

                  g   ˅ (g   ˄ g  ) = (g   ˅ g  ) ˄ g  . 

Also, g  , g  , g     S. Since M is a modular soft hyper lattice and g   ≤ g  ,  

                 g   ˅ (g   ˄ g  ) = (g   ˅ g    ˄ g  .                       

Now (g  , g  ) ˅ ((g  , g  ) ˄ (g    g  )) 

                                                        = (g  , g  ) ˅ (g   ˄ g  , g   ˄ g  ) 

                                = (g   ˅ (g   ˄ g  ), g   ˅ (g   ˄ g  )) 

                                     = ((g   ˅ g  ) ˄ g  , (g   ˅ g    ˄ g  ) 

                                     = (g   ˅ g  , g   ˅ g  ) ˄ (g  , g  ) 

                                     = ((g  , g  ) ˅ (g  , g  )) ˄ (g  , g  ). 

Therefore, R×S is a modular soft hyper lattice.  

Conversely,  

                Let R×S be a modular soft hyper lattice. 

We have to prove that both R and S are modular soft hyper lattices. 

Let g  , g  , g     R with g   ≤ g   and g  , g  , g     S with g   ≤ g  . 

Since R×S is a modular soft  hyper lattice, we have  

     (g  , g  ) ˅ ((g  , g  ) ˄ (g    g  )) = ((g  , g  ) ˅ (g  , g  )) ˄ (g  , g  ). 

     (g  , g  ) ˅ (g   ˄ g  , g   ˄ g  ) = (g   ˅ g  , g   ˅ g  ) ˄ (g  , g  ) 

      (g   ˅ (g   ˄ g  ), g   ˅ (g   ˄ g  )) = ((g   ˅ g  ) ˄ g  , (g   ˅ g    ˄ g  )   

      g   ˅ (g   ˄ g  ) = (g   ˅ g  ) ˄ g   and  g   ˅ (g   ˄ g  ) = (g   ˅ g    ˄ g  ). 

Thus, R and S are modular soft hyper lattices. 
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