

Median Deviation Array Searching Algorithm

Shansita Das Sharma1

1
Student, Class 11, Shikshantar School, Haryana, Gurgaon

---***---

Abstract - This paper proposes the concept of a new single

dimensional array search algorithm using mean deviation of

quartiles and extremes of a dataset about the median. It also

highlights the algorithm’s working principles, illustratively

explains the algorithms and compares it with pre-established

searching algorithms.

Key Words: Median Deviation Search, Interpolation

Search, Prediction, Quartiles, Extremes

1. INTRODUCTION

Array searching is a commonly used function in most small

and large programs to retrieve a specific item from a set [1].
There are several algorithms for searching for a value in an
array, each having its own advantages and disadvantages
depending on the distribution of values in the dataset [2].
There is always scope for new searching techniques based on
the data available to be searched. Median Deviation Search is
another new array searching algorithm, which is most efficient
when the data is uniformly distributed.

Properties

This is an algorithm, that, given an input of an array with n
numbers, finds the index that of a value searched for in the
array. Input required:
1. An array of numbers sorted in increasing order
2. Value to be searched
It returns the index of the value in the array, or -1 if not found.
If there are multiple indexes at which the value is found in the
array, any one of the indices will be returned.

2. ALGORITHM

2.1 Working Principle

Similar to Interpolation Search, the Median Deviation

Search algorithm works by attempting to predict the position
of the searched value [3]. However the latter follows a
different method – index of the value is predicted by using
mean deviation of extremes and quartiles about the median. If
the value is not found at that location, then the section of the
array being searched is reduced at every step until the section
contains only 5 values – the two extremes and the three
quartiles of that section. These 5 values are then searched
through linear search.

2.2 Working

Initially the section of the array under consideration is the
entire array. So the array of reference points stores min, 1st
quartile, median, 3rd quartile and max index of the entire
array (note: the index numbers are stored, not the value at
those indices).
points = {minimum, Q1, median, Q3, maximum}
points.length = 5
The algorithm uses the following formula to calculate mean
deviation about the median of a set of values:

 ……………………………..……..(1)

pi = elements of points array
xm = median
n = number of elements in the current section of the array arr
dev = mean deviation about the median

The predicted index of the value to be searched (val) is

calculated using the formula:

 …..…………………..(2)

loc = predicted index of val
val = value to be searched
min = minimum value of current section (min=points[0]
initially)
dev = deviation calculated using equation(1)

As the program iterates, the section of arr array being
traversed reduces by increasing min if val is above predicted
index or decreasing max if val is below predicted index.
Alternatively, if val is found at that index, then it is returned.

if val=arr[loc] -> return loc
if val<arr[loc] -> max = loc-1
if val>arr[loc] -> min = loc+1

The new section of array to be traversed is within the bounds
of the new max and min (inclusive of max and min).
Accordingly, the 1st quartile, median and 3rd quartile stored
in points array are also changed. Deviation is calculated again
for the new section using the new values in points array to
achieve higher precision in predicting the index of val. At the
time when the section of array being considered has fewer
elements than points.length, the loop terminates and value is
searched in the remaining section through linear search.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 11 | Nov 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1728

2.3 Algorithm Pseudocode

int update(int points[])

int currLen = points[4]-points[0]+1 // section of

array currently being considered

points[1] = currLen/4 + points[0] //Q1

points[2] = currLen/2 + points[0] //median

points[3] = currLen*3/4 +points[0] //Q3

return currLen

int medianDeviationSearch(int val, int arr[])

// initialisations

int arr_len = length of arr[]

int points[] = {0, 0, 0, 0, arr_len-1}

int p_len = 5 // length of points[]

double dev = 0.0

int loc = -1 // store predicted location of val

int currLen = update(points) // store quartiles

// repeat loop while currLen > points.length

while currLen > p_len {

if val>arr[points[4]] OR val<arr[points[0]]

return -1

// calculate deviation of current section

for i=0 to i=4

dev = dev + |arr[points[i]] - arr[points[2]]|

dev = dev/currLen

// predict index of val

loc=(val-arr[points[0]])/dev + points[0]

// check for value at predicted location

if val equals arr[loc]

return loc

else if val < arr[loc]

points[4] = loc-1

else

points[0] = loc+1

2.2 Illustrative Explanation

Let the value to be searched be = 43

Step I.

points = {0,3,6,9,11}
dev = 14.25
loc = 2
Value 43 not found at index 2 => repeat loop with
min=loc+1

Step II.

points = {3,5,7,9,11}
dev = 15.36111
loc = 4
Value 43 found at index 4 => Return 4

3 . C O M PA R I S O N W I T H I N T E R P O L AT I O N

SEARCH

In comparison to Interpolation Search, the probability of
reaching the worst case scenario is significantly lower in
Median Deviation Search for a large dataset with non-
uniformly distributed data [4].

The following graphs compare runtimes of interpolation
search and median deviation search for varying lengths of
arrays. Each of the 30 points along the x-axis represents a
unique array. In each array, 100 distinct values were searched.
Y-axis shows average time taken in nanoseconds to search an
element in each array.

currLen = update(points)

}

// search for value in points[]

for i=0 to i=4

if arr[points[i]] equals val

return points[i]

return -1

Graph-1: Search times for arrays where array length is a

random number between 1 and 10000

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 11 | Nov 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1729

APPENDIX

Reference Program in Java

public class medianSearchAlgorithm {

int update(int points[]){

int currLen = points[4]-points[0]+1; points[1]

= currLen/4 + points[0]; //Q1 points[2] =

currLen/2 + points[0]; //median points[3] =

currLen*3/4 +points[0]; //Q3 return

currLen;
Graph-2: Search times for arrays where array length is 100

Graph-3: Search times for arrays where array length is 5000

4. CONCLUSION

This paper puts forward the Median Deviation Search
algorithm to find the index of a value in a sorted array.
Implementation of the algorithm and test results show that it is
efficient in both uniform and non-uniform datasets. It is also
observed that it is more efficient that existing search
algorithms as the size of the dataset increases. Hence, it may
have several applications where quick searching of data
structures is required.

REFERENCES

1. Megharaja D.S, Rakshitha H J and Shwetha K,

“Significance of Searching and Sorting in Data
S t r u c t u r e s , ” I n t e r n a t i o n a l R e s e a r c h J o u r n a l o f
Engineering and Technology, 2018.

2. Najma Sultana, Smita Paira, Sourabh Chandra. Sk Safikul
Alam, “A Brief Study and Analysis Of Different
Searching Algorithms,” IEEE, 2017.

3. www.geeksforgeeks.org/interpolation-search/

4. Ahmad Shoaib Zia, “Title of paper with only first word
c a p i t a l i s e d , ” I n t e r n a t i o n a l R e s e a r c h J o u r n a l o f
Engineering and Technology, 2020.

}

int medianDeviationSearch(int val, int arr[]){

// initialisations

int arr_len = arr.length;

int points[] = {0, 0, 0, 0, arr_len-1};

int p_len = 5; // length of points[]

double dev = 0.0;

int loc = -1; // store predicted location of val

int currLen = update(points); // store quartiles

while (currLen > p_len) {

if (val>arr[points[4]] || val<arr[points[0]])

return -1;

// calculate deviation of current section

for (int i=0; i<=4; i++)

dev+=Math.abs(arr[points[i]]-arr[points[2]]);

dev = dev/currLen;

// predict index of val

loc=(int)((val-arr[points[0]])/dev) + points[0];

// check for value at predicted location

if (val == arr[loc])

return loc;

else if (val < arr[loc])

points[4] = loc-1;

else

points[0] = loc+1;

currLen = update(points);

}

// search for value in points[]

for (int i=0; i<=4; i++)

if (arr[points[i]] == val)

return points[i];

return -1;

}

}

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 11 | Nov 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1730

http://www.geeksforgeeks.org/interpolation-search/

