
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 11 | Nov 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1351

Comparison of Evolutionary Algorithms for Timetable Scheduling

Anuj Singh Koli1, Taikhoom Rajodwala2, Amit Mittal3

1,2,3Department of Computer Engineering, Institute of Engineering and Technology, Devi Ahilya Vishwavidyalaya,
Indore (M.P.)

--***---
Abstract— Timetable scheduling is a ubiquitous problem,
faced by all kinds of educational institutes around the
world. Generally, timetables are created manually by
faculties or admins but the resultant time tables aren’t
optimized. If an evolutionary algorithm-based approach is
used then faster and optimal results could be achieved. This
paper will discuss various evolutionary algorithms that can
be used to solve the university timetable scheduling
problem. Scheduling problems come under the category of
NP-hard optimization problems, which means there is no
linear polynomial time solution available to solve these.
That’s why evolutionary algorithms are perfectly suited for
such tasks. In this paper, we are mainly going to discuss
Tabu Search, Particle Swarm Optimization, Classical Genetic
Algorithm, Memetic Algorithms and (1+1) Evolutionary
Algorithm. Furthermore, we have presented a discussion on
relevant work done by various researchers, and a brief
description of how evolutionary algorithms can be used for
timetabling problems. Finally results obtained from various
independent research, based on specific use cases they are
applicable for, are combined and compared.

Keywords— Constraint Satisfaction, Evolutionary
Algorithms, University Timetable Scheduling, Guided
Operators, Metaheuristic Search, Tabu Search, Particle
Swarm Optimization, Genetic Algorithm, Memetic
Algorithm, (1+1) Genetic Algorithm

I. INTRODUCTION

Timetable scheduling is a complex problem and belongs
to a class of NP-hard computational problems. Which
means that it isn’t possible to generate a solution in
polynomial time but it is possible to identify a correct
solution. Additionally, timetable scheduling is a type of
constraint satisfaction problem where one needs to identify
the valid combination of events and resources based on
various constraints. For example, one needs to identify a
valid combination of a classroom, faculty, time, and a batch;
while ensuring constraints like a given classroom and given
batch is free at that particular time.

 Generally, timetable scheduling is done manually at
universities because there isn’t any generic solution that
can satisfy different kinds of requirements of various
universities. Often, institutions have to compromise with
suboptimal timetables that either don't satisfy all required
constraints or utilise resources inefficiently. However,
recent developments in evolutionary computation have
shown some promising results when used in conjunction
with human intelligence, it provides us with a close to

optimal timetable. Evolutionary computation refers to
optimisation algorithms that are inspired by nature and
biological evolution. Various algorithms like Tabu Search,
Particle Swarm Optimisation, Genetic Algorithm, Memetic
Algorithm and (1+1) Evolutionary Algorithm can be used to
generate a feasible timetable for universities. Additionally,
each of the aforementioned algorithms is suitable for
optimisation of a discrete class of constraints and one can
choose which algorithm to apply based on their particular
use case.

 The evolutionary algorithms have some common
characteristics. For instance, initially, they all start with a
group of possible solutions known as swarm or population.
Second, they all use mutation operators (random or guided)
to modify active candidates according to the current best
candidate and in turn, search the local neighbourhood of a
given solution. Lastly, they all apply group intelligence to
identify global optimum. Moreover, a common trend is seen
among various advancements in different evolutionary
algorithms where initially researchers worked on
randomised operators with no contextual knowledge, but
then they experimented with guided operators which used
contextual knowledge to identify the next best solution and
found them to be superior to their randomised
counterparts.

 We have worked on developing the simplest form of GA, i.e.
(1 + 1) Genetic Algorithm [18] for solving timetabling
problems and verified the results obtained from various
studies under consideration. In the (1+1) version of GA, we
selected the new best solution between a parent and a child.
(1+1) GA converges at a faster rate because we store
domain knowledge in local memory and use this knowledge
to avoid moving to sub-optimal points in search space. Also,
both unguided and guided mutations are used by us and
finally, results are compared.

 This research paper is aimed to help the future researcher
to identify the most suitable algorithm based on their
problem requirement. In the upcoming sections, we will
discuss various classes of timetable scheduling problems
and appropriate algorithms for those classes.

 This paper is organised as follows: Section II describes the
problem statement under scrutiny, Section III talks about
related work done by other academic professionals and
literature survey, Section IV deals with describing various
extensions of evolutionary algorithms, comparison and use
cases, and the results are presented in Section V. Section VI

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 11 | Nov 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1352

concludes our research and an acknowledgement is made
in this section.

II. PROBLEM DESCRIPTION (HARD AND SOFT CONSTRAINTS)

The Timetabling problem (TTP) is a special case of the
Job Shop Scheduling problem (JSP) and like JSP, we need to
assign a resource to an event. In the case of TTP, we have to
assign a combination of [faculty, student, course, room]
(resource) to a time slot (event). The total number of events
is a product of the number of days and number of working
hours. As the number of resources and events increases,
their total number of possible combinations rise
exponentially and a combinatorial explosion takes place.

The timetable scheduling problem is an optimisation
problem and we try to optimise two kinds of constraints,
namely hard and soft constraints. Hard constraints are
those constraints that can’t be violated and violation of
which means that solution is infeasible and incorrect. On
the other hand, soft constraints are those constraints that
could be violated and violation of which means that though
the solution is feasible, still it is a sub-optimal and better
solution than the current solution exists.

 Sample hard constraints:

i. No two professors can attend the same room or the
same batch at a time.

ii. No two batches are assigned the same room or the
same professor at a time.

iii. No room can host multiple classes at a time.

iv. No batch or professor should be assigned to
multiple rooms at a time.

v. Every day must have a break after three hours of
continuous classes.

vi. Lectures can only be conducted in the type of
classroom allowed based on lecture type.

vii. Each combination of batch and subject must be
assigned respective minimum lectures.

viii. Assigned room should have enough capacity to
accommodate all students.

 Sample Soft constraints:

i. A professor should be assigned classes based on his
preference of time.

ii. There shouldn’t be more than 2 lectures of the
same subject on a given day.

iii. There should be a minimum of 3 lectures and a
maximum of 8 lectures in a day.

iv. There should be a minimum ideal time between
lectures for both students and faculties.

v. Rooms should be used efficiently and a minimum
number of rooms should be used.

vi. Lecture should be uniformly distributed among
allowed days.

vii. Each faculty should teach at least 3 days a week.

viii. Schedule for Faculty and students shouldn’t be
hectic and should have only limited lectures in a
day.

ix. Lectures and Lab of a subject must be assigned on
the same day.

x. Longer classes must be assigned at the start of the
day.

III. RELATED WORKS

The idea of solving timetable scheduling problems with
the help of algorithms was first introduced by Werra in
1985[1]. Werra suggested dealing with timetabling
problems using graphs and networks. After that, a large
number of researchers had shown interest in solving
timetabling problems using various algorithms and this led
to the formation of PATAT (Practice and Theory of
Automated Timetabling) [2] in 1995. Moreover, the
International Competition of Timetabling was established
with the help of PATAT in 2002 (ITC, 2002). Recently ITC
2019 was conducted with the aim of stimulating research in
the domain of complex timetable scheduling problems.
Since 1985, various Meta-heuristics methods like Simulated
annealing [3], Tabu search [4], Particle Swarm Optimisation,
Genetic Algorithms, Memetic Algorithms are proposed to
solve the timetabling problem.

A. Tabu Search

Daniel Costa in 1994 proposed basic Tabu Search to
compute an operational timetable. To further improve
results Zhipeng & Jin-Kao, in 2010[11], used tabu search to
deal with the timetabling problem. They have broken down
tabu search into three steps: initialization, intensification
and diversification. In this case, intensification is used to
search in local search space while the final diversification
step is used to avoid getting stuck in a local optimum. On
the other hand, some researchers tried working with a
hybrid approach. For example, Sadaf Naseem Jat &
Shengxiang Yang [12] worked on a hybrid Genetic
Algorithm and Tabu Search approach, where they used
Genetic Algorithm in the first step to generate an initial
solution and in the second step Tabu Search is used to
further improve the optimality of solution obtained in the
first step.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 11 | Nov 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1353

B. Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm,
proposed by Kennedy and Eberhart [16], is a metaheuristic
algorithm based on the concept of swarm intelligence. It is
of great importance noting that dealing with PSO has some
advantages when compared with other optimization
algorithms as it has fewer parameters to adjust. In the early
1990s, several studies regarding the social behaviour of
animal groups were developed. These studies showed that
some animals belonging to a certain group, that is, birds
and fishes, can share information among their group, and
such capability confers these animals a great survival
advantage. Inspired by these works, Kennedy and Eberhart
[16] proposed in 1995 the PSO algorithm, a metaheuristic
algorithm that is appropriate to optimize nonlinear
continuous functions. After this algorithm was proposed,
many modified versions were also proposed such as by
Yuhui and Gireesha [17], which involved the application of
weight to the main equation of the algorithm to make it
more biased and to converge to an optimum point more
quickly. The idea behind this weight is to divert the search
for global optimum by the particles according to the
problem to be solved, that is, instead of using the
generalised approach for all problems, it tends to introduce
a bias to the equation with weight value specific to that
problem.

C. Genetic and Memetic Algorithm

A classical genetic algorithm-based approach was used
by Esraa A. Abdelhalim in 2006 [5] to generate an optimal
solution for Alexandria University. Here Esraa emphasised
on maximizing resource utilization and found that
timetabling problem is closely related with space
optimisation problem as different approaches that are used
in solving the space allocation problems can also be used
for solving the timetabling problems. Moving forward, some
researchers further tried to improve the behaviour of the
classical genetic algorithm by improving various
components of the genetic algorithm. For instance, Vinayak
Sapru in 2010[6] used guided mutation in place of random
mutation and found that by using guided mutation, the
algorithm converges to a feasible solution in all cases and
converges much faster. Similarly, Antariksha Bhaduri in
2009[10] used the memetic algorithm to further improve
the approach of finding an optimal solution. Antariksha
implemented Genetic Artificial Immune Network (GAIN)
and found that convergence rate became much slower for
GA when it located a sub-optimal result. However, GAIN
continued to converge at an almost similar rate until the
valid solution was located.

On the contrary, in classical genetic algorithms, each of
the candidate solutions or chromosomes is a passive entity,
that is, operators work in random fashion rather than
focusing on the problem at hand. While in hybrid
evolutionary algorithms or memetic algorithms candidate
solutions work as an active entity, that is, operators are

directed/guided and capable of performing local
refinements. Therefore to convert a GA to a Memetic
Algorithm (MA), one needs to modify its basic operators
like mutation, selection, and crossover. For instance, Burke,
E. & Newall [13] dissected basic mutation operator into
light and heavy mutation operator and combined hill
climbing to create a memetic algorithm for university exam
timetabling. Similarly, Özcan, E. and A. Alkan [14]
implemented violation directed mutation and violation
directed hierarchical hill-climbing method and showed
some promising results. According to Pablo Moscato [15],
MA is close to a form of population-based hybrid genetic
algorithm (GA) coupled with an individual learning
procedure capable of performing local refinements.

 Finally, the representation of a chromosome in the genetic
algorithm also plays a significant role. A chromosome can
be represented in one dimension as a binary string [7] or
floating-point representation [8], or in two dimensions as a
matrix [5], or in three dimensions as a cube [9].

IV. PROPOSED SOLUTIONS

A. Tabu Search

Tabu search is an enhanced form of local search. In local
search, we look into the immediate neighbourhood of the
current solution in hope for a better solution. However,
because of this, we have a risk of running into a local
optimum. To deal with this tabu search was invented. Tabu
search avoids visiting a non-optimal solution by
maintaining a tabu list that consists of forbidden nodes.
This tabu list is used for future reference to verify if a given
candidate solution is already visited and found to be non-
optimal. Moreover, tabu search uses the concept of
intensification and diversification where a non-optimal
move is made to get out of local optima if no better move is
available.

Tabu search could also be used to create a university
timetable. In tabu search, we first create a suboptimal
timetable based on some heuristics. Then we create all
neighbouring solutions, modifying the current solution with
a single mutation. From this solution set, we select the best
solution so far Sb. The Sb is verified against the tabu list, and
if it is present in the tabu list then we go to the second-best
solution, else we compare the Sb with the current solution.
If Sb is better, we replace the current with Sb. At last, we
check if the desired solution/optimal timetable is achieved,
otherwise we repeat the process and keep on exploring the
search space.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 11 | Nov 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1354

Fig. 1 Tabu Search Flow Diagram

B. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm is
inspired by the concept of swarm intelligence, often seen in
animal groups. The PSO uses a swarm of particles to find a
solution in search space, each particle looks into its local
neighbourhood for a good solution. While also keeping
track of global optima or best solution found so far, by
communicating with the other particles. In each generation,
a particle updates its position, with respect to its previous
position and position of the other particles. The value by
which any particle changes the position is defined by three
terms. The first term is a product between parameter w
(inertia weight) and particle’s previous velocity, which is
the reason it denotes a particles’ previous motion into the
current one. The individual cognition term, which is the
second term, is calculated by means of the difference
between the particle’s own best position and its current
position. One may notice that the idea behind this term is
that as the particle gets more distant from the best position,
the difference between best position and current position
must increase; therefore, this term increases, attracting the
particle to its best own position. Finally, the third term is
social learning. Because of it, all particles in the swarm can
share the information of the best point achieved regardless
of which particle had found it. Its format is just like the
second term and is defined by the difference between
global best position and particle's current position.

One of the use cases of particle swarm optimization is
the university timetable scheduling problem. Here we start
by generating an initial population of potential
solutions/particles (swarm), where each particle

corresponds to a randomly generated timetable. In each
generation, two kinds of mutation are performed: in the
first mutation for each particle, a class is swapped from the
local best solution, meanwhile, in the second mutation, a
class is randomly selected from global best and swapped
with a class in the current timetable. This process is
repeated until further mutations don’t result in any
improvement of particle fitness or maximum iterations are
completed.

Fig. 2 Particle Swarm Optimization Flow Diagram

C. Genetic Algorithm

Genetic algorithm is derived from the Darwinian theory
of evolution. In GA we create an initial population of
random individuals and solutions. Then we calculate fitness
for each of the individuals in the current population and
after that, we select the fittest individual among the
population using a selection operator based on the
resultant fitness value. Candidates with the highest fitness
will be directly moved to the next generation. While
candidates with high yet not the best fitness value will be
used by crossover operators to generate new individuals.
Then a mutation operator is used to induce random
changes to the population, to ensure diversity. Finally,
candidates obtained after applying all previous operators
will become part of the next generation. We will check this
new population if desired fitness value is achieved, if not

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 11 | Nov 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1355

then the process will be repeated until the desired optimal
solution is achieved.

As explained, this process can be used to generate an
optimal university timetable. Here we first create an initial
population consisting of random infeasible timetables. We
calculate the fitness value of each candidate using a fitness
function, which measures the number of collisions among
classes. From this pool, we select timetables with least
collision of classes or highest fitness value (that is, no. of
constraint violation), chosen candidates are termed as
elitist individuals and directly become part of the next
generation. Moving on, we use selection schemes like
tournament selection to randomly select a few fit

individuals that were left out in initial selection. With the
help of crossover operators, we swap classes between two
times tables to generate a new group of individuals to
create a new population. Then we apply the mutation
operator with a low probability. Mutation operators
randomly swap classes within a timetable to ensure genetic
diversity and avoid getting stuck into local optima. Finally,
we calculate fitness value or collisions among the new
generation and if a feasible timetable is achieved then the
process could be stopped, else the cycle is repeated,
starting from crossover until a feasible solution is not found.
The feasible solution here refers to a timetable that satisfies
all kinds of constraints.

Fig. 1 Genetic Algorithm Flow Diagram

D. Memetic Algorithm

Memetic algorithms are extensions of genetic
algorithms. It’s a hybrid algorithm that combines GA with
local search or heuristic search like tabu search, to avoid
premature convergence. Implementation of MA is similar to
GA, however, unlike GA, MA uses advanced guided
operators. Like GA, we first create an initial population,
then the fitness of all individuals is calculated, and fittest
individuals are separated and moved forward. Then the
selection operator is used to select candidates for the
crossover, but the rest of the process differs from this point
forward. Crossover operator in MA is guided and only
swaps best subsections of chromosomes that guarantee the
highest fitness after a crossover operation. Similarly, the
mutation operator is also guided and before performing a
mutation, checks if the resulting mutation leads to greater
fitness; if the not different mutation is tried. After that, a
local search is used to find a better solution in the
neighbourhood of the current solution. If a candidate with

higher fitness is identified then the given candidate is
replaced with this newly found candidate. In the end, we
apply fitness function on the newly generated population. If
the population achieves the highest or lowest fitness value
based on what kind of fitness function we are trying to
achieve, that is, maximising or minimising function, then we
stop the execution, else we reiterate until an expected
solution is found.

Additionally, the aforementioned processes can be
implemented for university timetabling. Just like classical
GA, we will create an initial population of sub-optimal
timetables from which we will select new individuals
according to their fitness for the next generation. However,
for the upcoming steps, guided operators will be used.
Consequently, the crossover operator will only swap those
classes between different candidates/timetables that will
result in higher fitness. Similarly, the mutation operator
will also use heuristic knowledge to swap classes in a
timetable and only perform mutations that lead to fitter

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 11 | Nov 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1356

individuals. Then we will use a local search algorithm to
generate a better individual or meme, that can encourage a
faster convergence. At last, we will check the fitness value

of the latest spawn population to decide if iteration should
be terminated or the solution needs further refinements.

Fig. 4 Memetic Algorithm Flow Diagram

TABLE I
COMPARISON OF ALGORITHMS

Factors Tabu Search Particle Swarm
Optimization

Genetic
Algorithm

Memetic
Algorithm

(1+1) Genetic
Algorithm

Average
iterations

Large (5000-7000) Medium (500-
1000)

Low (50-100) Medium (500-
1000)

Large (3000-
6000)

Initial
population size

Large (>500) Medium (30) Large (100) Large (100) Small (2)

Optimality of
final solution

Local optimum Global optimum Global optimum Global
optimum

Local optimum

Running time Lowest Low High Highest Low
Individual type Simple Simple to complex Simple to Highly

complex
Simple to
Highly complex

Simple to Highly
complex

Biological
process Inspired
from

Simulated annealing Swarm intelligence Natural selection Natural &
cultural
evolution

Natural
evolution

Factors for next
generation

Tabu list or list of
infeasible solutions

Previous velocity,
particle’s current
optimum and
global optimum

Fitness of new
individuals

Fitness of new
individuals and
tabu list

Fitness of next
offspring

Type of problem Large nonlinear
optimization

Nonlinear
continuous

Global
optimization

Multi-class,
multi-objective
feature
selection

Nonconvex
optimization in
high dimension
and black box
scenarios

Constraints
optimization
level

Hard only Mostly hard and
some soft

Hard and soft Hard and soft Mostly hard and
some soft

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 11 | Nov 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1357

V. RESULTS

Tabu search (TS) algorithm starts with creating an
initial feasible timetable using a greedy approach. Thus is
best suited for problems where there are a lower number of
resources to optimise and fewer number of constraints to
satisfy, for example, exam scheduling problems, job shop
scheduling, dynamic space allocation, etc. Zhipeng and Jin-
Kao in 2010[19], implemented an adaptive tabu search
(ATS) algorithm which dynamically optimises various
parameters during evaluation. They have tested their
algorithm on 4 personal instances and 14 public
competition instances of the ITC-2007. They found that for
smaller data sets TS performs like a normal local search
(LS). However for large data sets, LS outperforms TS and is
able to achieve slightly better fitness value. But then they
improved TS by creating a hybrid algorithm, where they
provided adaptive characteristics to classical TS. They were
further able to optimise their algorithm and were able to
achieve even better fitness values than LS with ATS.

Particle Swarm Optimization (PSO) algorithm starts
with creating an initial infeasible timetable using a random
approach. Similar to tabu search, PSO is best suited for low
resources and few constraints. As each dimension in which
a particle can move corresponds to one of the possible
resources, therefore as the number of resources increase,
dimension increases and a combinatorial explosion takes
place. Nonetheless, because PSO starts with initial random
solutions it is better able to optimise soft constraints as
compared to tabu search, still it fails to create a feasible
solution when a large number of soft and hard constraints
need to be satisfied simultaneously. That’s why, PSO is best
suited for creating timetables for small universities with
more hard constraints to work on and less soft constraints
to satisfy. Chen, Ruey-Maw & Shih, Hsiao-Fang in 2013[20]
created Particle Swarm Optimization with Local Search to
address timetabling problems at their university. They have
compared conventional PSO with a hybrid solution (that is,
combination of PSO and local search). Their findings
suggest that though normal PSO is able to find a solution, it
often runs into a local optima. Therefore to improve quality
of solution and avoid premature convergence local search
can be used in conjunction with PSO.

 Genetic algorithm (GA) was created to resolve the
challenges associated with PSO and TS. Just like PSO and TS,
GA starts with a large initial population. However, it applies
various operators like mutation, crossover, and selection to
find the most feasible solution. With the help of crossover
GA is capable of searching large search space as compared
to TS. Meanwhile the mutation operator ensures that GA
don’t get stuck in local optima like PSO. Hence, classical GA
is better than standard PSO and TS. On the contrary, GA is
slower as compared to previous algorithms and requires
more computation power to search a larger search space.
That’s why GA is better suited for problems that require the
most optimal solution and where we have sufficient time to
calculate the solution. Generally universities are always

aware of their resources like rooms, faculties, courses and
usually timetable creation starts months before an actual
timetable is needed. Wang Wen-jing in 2018 worked on an
improved adaptive genetic algorithm (AGA) for course
scheduling. His findings suggest that AGA is able to create
better timetables than GA and these timetables along with
satisfying all hard constraints also satisfy all soft
constraints to a great extent, that is, greater teacher
satisfaction, course dispersion, class priority in course
scheduling, but AGA is not always superior and takes more
time than GA. Finally, Wang was able to identify optimum
parameters for GA, that is average generation is around 150
to 250 and average population around 100 to 150.

 Memetic algorithms (MA) are a more advanced form of GA.
In most cases, MA is the result of combining GA with any
other evolutionary or optimisation technique, for instance,
MA is a hybrid form of GA and TS. By implying local or tabu
search MA converges much faster than GA, meanwhile,
providing us with timetables of similar fitness. Moreover,
GA as a part of MA ensures that greater width of search
space is covered and TS/Hill climbing part ensures that
greater depths are searched. Still, MA is computationally
more expensive than GA because of the added local search
overhead. Burke, Newall and Weare in 2005[22] used the
memetic algorithm for exam timetabling. They have used
MA on really large datasets obtained from various
universities, at the same time, they compared MA results
with a Multi start random descent algorithm. According to
their observations, MA was able to generate solutions in all
cases while random descent was unable to find a solution
even when provided with more time and computation
power. Also according to Burke, MA uses knowledge from
the problem domain for self-improvement of solution. In
this way, MAs are more guided as compared to GAs.

VI. CONCLUSION AND FUTURE SCOPE

 We have seen implementation of various evolutionary
algorithms and how they can be used to solve timetabling
problems. Additionally, we have discussed work of other
researchers in this domain. From our analysis, we have
concluded the following points.

 There is no one fit for all and one has to identify
suitable algorithms for their use case by analysing
factors like their data size, computation time,
number of constraints, and level of accuracy.

 For complex and highly constraint timetabling
problems fitness value follows the given order MA >
GA > PSO > TS.

 When PSO and TS were mixed with other
metaheuristic search methods, they were able to
generate results similar to GA and MA.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 11 | Nov 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1358

 The basic difference between all these algorithms is
the width and depth of the search space they cover
when finding an optimal solution.

All of the comparisons we have made are highly generic
and should only be used for basic understanding of
algorithms. For deeper understanding and more accurate
results one should refer to our referenced research papers
in the reference section. Each of the algorithms in study has
its own set of pros and cons, however, one can also combine
these algorithms to generate new algorithms and further
optimise their use case. Likewise, recently many
researchers are working with hybrid approaches and have
found encouraging results, but still these researches are in
their nascent stage and that is why they aren't covered by
our study and were left for future study.

REFERENCES

[1] Werra, D.D., 1985. An introduction to timetabling. Eur.
J. Operat. Res., 19: 151-162. DOI: 10.1016/0377-
2217(85)90167-5

[2] “International series of conferences on the practice
and theory of automated timetabling
(patat),”https://patatconference.org/#:~:text=PATAT
%20Conferences,of%20computer%2Daided%20timet
able%20generation.

[3] D. Zhang, Y. Liu, R. MHallah, and S. Leung, “A simulated
annealing with a new neighbourhood structure based
algorithm for high school timetabling problems,”
European Journal of Operational Research, vol. 203, no.
3, pp. 550–558, 1999.

[4] G. White, B. Xie, and S. Zonjic, “Using tabu search with
longer-term memory and relaxation to create
examination timetables,” European Journal of
Operational Research, vol. 153, no. 1, pp. 80–91, 2004

[5] Abdelhalim, Esraa & El Khayat, Ghada. (2016). A
Utilization-based Genetic Algorithm for Solving the
University Timetabling Problem (UGA). Alexandria
Engineering Journal. 55. 10.1016/j.aej.2016.02.017.

[6] V. Sapru, K. Reddy and B. Sivaselvan, "Time table
scheduling using Genetic Algorithms employing
guided mutation," 2010 IEEE International Conference
on Computational Intelligence and Computing
Research, Coimbatore, 2010, pp. 1-4, doi:
10.1109/ICCIC.2010.5705788.

[7] J. Holland, Adaptation in Natural and Artificial Systems.
Ann Arbor, MI: University of Michigan Press, 1975.

[8] Z. Michalewicz, Genetic Algorithms + Data
Structures=Evolution Programs. Springer-Verlag, New
York, 1994.

[9] B. Sigl, M. Golub and V. Mornar, "Solving timetable
scheduling problem using genetic algorithms,"
Proceedings of the 25th International Conference on
Information Technology Interfaces, 2003. ITI 2003.,
Cavtat, Croatia, 2003, pp. 519-524, doi:
10.1109/ITI.2003.1225396.

[10] Bhaduri, Antariksha. (2009). University Time Table
Scheduling Using Genetic Artificial Immune Network.
ARTCom 2009 - International Conference on Advances
in Recent Technologies in Communication and
Computing. 289-292. 10.1109/ARTCom.2009.117.

[11] Z. Lu¨ , J. Hao, Adaptive tabu search for course
timetabling, Eur. J. Oper. Res. 200 (2010) 235–244

[12] Jat, S.N., Yang, S. A hybrid genetic algorithm and tabu
search approach for post enrolment course
timetabling. J Sched 14, 617–637 (2011).
https://doi.org/10.1007/s10951-010-0202-0

[13] Burke, E. & Newall, J. & Weare, R.. (2006). A memetic
algorithm for university exam timetabling. 10.1007/3-
540-61794-9_63.

[14] Özcan, E. and A. Alkan. “A Memetic Algorithm for
Solving a Timetabling Problem: An Incremental
Strategy.” (2007).

[15] Moscato, P. (1989). "On Evolution, Search,
Optimization, Genetic Algorithms and Martial Arts:
Towards Memetic Algorithms". Caltech Concurrent
Computation Program (report 826).

[16] J. Kennedy and R. Eberhart, "Particle swarm
optimization," Proceedings of ICNN'95 - International
Conference on Neural Networks, Perth, WA, Australia,
1995, pp. 1942-1948 vol.4, doi:
10.1109/ICNN.1995.488968.

[17] Shi, Yuhui & Obaiahnahatti, B.Gireesha. (1998). A
Modified Particle Swarm Optimizer. Proceedings of the
IEEE Conference on Evolutionary Computation, ICEC. 6.
69 - 73. 10.1109/ICEC.1998.699146.

[18] S. Droste, Th. Jansen, I. Wegener, A rigorous
complexity analysis of the (1+1) Evolutionary
Algorithm for linear functions with Boolean inputs, in:
Proc. IEEE Internat. Conf. on Evolutionary
Computation ICEC ’98, IEEE Press, Piscataway, NJ,
1998, pp. 499–504.

[19] Zhipeng Lü, Jin-Kao Hao, Adaptive Tabu Search for
course timetabling, European Journal of Operational
Research, Volume 200, Issue 1, 2010, Pages 235-244,
ISSN 0377-2217,
https://doi.org/10.1016/j.ejor.2008.12.007.
(http://www.sciencedirect.com/science/article/pii/S
0377221708010394)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 11 | Nov 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1359

[20] Chen, Ruey-Maw & Shih, Hsiao-Fang. (2013). Solving
University Course Timetabling Problems Using
Constriction Particle Swarm Optimization with Local
Search. Algorithms. 6. 227-244. 10.3390/a6020227.

[21] Wen-jing, Wang. (2018). Improved Adaptive Genetic
Algorithm for Course Scheduling in Colleges and
Universities. International Journal of Emerging
Technologies in Learning (iJET). 13. 29.
10.3991/ijet.v13i06.8442.

[22] Burke E.K., Landa Silva J.D. (2005) The Design of
Memetic Algorithms for Scheduling and Timetabling
Problems. In: Hart W.E., Smith J.E., Krasnogor N. (eds)
Recent Advances in Memetic Algorithms. Studies in
Fuzziness and Soft Computing, vol 166. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/3-540-
32363-5_13

