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Abstract— Timetable scheduling is a ubiquitous problem, 
faced by all kinds of educational institutes around the 
world. Generally, timetables are created manually by 
faculties or admins but the resultant time tables aren’t 
optimized. If an evolutionary algorithm-based approach is 
used then faster and optimal results could be achieved. This 
paper will discuss various evolutionary algorithms that can 
be used to solve the university timetable scheduling 
problem. Scheduling problems come under the category of 
NP-hard optimization problems, which means there is no 
linear polynomial time solution available to solve these. 
That’s why evolutionary algorithms are perfectly suited for 
such tasks. In this paper, we are mainly going to discuss 
Tabu Search, Particle Swarm Optimization, Classical Genetic 
Algorithm, Memetic Algorithms and (1+1) Evolutionary 
Algorithm. Furthermore, we have presented a discussion on 
relevant work done by various researchers, and a brief 
description of how evolutionary algorithms can be used for 
timetabling problems. Finally results obtained from various 
independent research, based on specific use cases they are 
applicable for, are combined and compared. 
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I. INTRODUCTION 

Timetable scheduling is a complex problem and belongs 
to a class of NP-hard computational problems. Which 
means that it isn’t possible to generate a solution in 
polynomial time but it is possible to identify a correct 
solution. Additionally, timetable scheduling is a type of 
constraint satisfaction problem where one needs to identify 
the valid combination of events and resources based on 
various constraints. For example, one needs to identify a 
valid combination of a classroom, faculty, time, and a batch; 
while ensuring constraints like a given classroom and given 
batch is free at that particular time. 

 Generally, timetable scheduling is done manually at 
universities because there isn’t any generic solution that 
can satisfy different kinds of requirements of various 
universities. Often, institutions have to compromise with 
suboptimal timetables that either don't satisfy all required 
constraints or utilise resources inefficiently. However, 
recent developments in evolutionary computation have 
shown some promising results when used in conjunction 
with human intelligence, it provides us with a close to 

optimal timetable. Evolutionary computation refers to 
optimisation algorithms that are inspired by nature and 
biological evolution. Various algorithms like Tabu Search, 
Particle Swarm Optimisation, Genetic Algorithm, Memetic 
Algorithm and (1+1) Evolutionary Algorithm can be used to 
generate a feasible timetable for universities. Additionally, 
each of the aforementioned algorithms is suitable for 
optimisation of a discrete class of constraints and one can 
choose which algorithm to apply based on their particular 
use case.  

 The evolutionary algorithms have some common 
characteristics. For instance, initially, they all start with a 
group of possible solutions known as swarm or population. 
Second, they all use mutation operators (random or guided) 
to modify active candidates according to the current best 
candidate and in turn, search the local neighbourhood of a 
given solution. Lastly, they all apply group intelligence to 
identify global optimum. Moreover, a common trend is seen 
among various advancements in different evolutionary 
algorithms where initially researchers worked on 
randomised operators with no contextual knowledge, but 
then they experimented with guided operators which used 
contextual knowledge to identify the next best solution and 
found them to be superior to their randomised 
counterparts.  

 We have worked on developing the simplest form of GA, i.e. 
(1 + 1) Genetic Algorithm [18] for solving timetabling 
problems and verified the results obtained from various 
studies under consideration. In the (1+1) version of GA, we 
selected the new best solution between a parent and a child. 
(1+1) GA converges at a faster rate because we store 
domain knowledge in local memory and use this knowledge 
to avoid moving to sub-optimal points in search space. Also, 
both unguided and guided mutations are used by us and 
finally, results are compared.  

 This research paper is aimed to help the future researcher 
to identify the most suitable algorithm based on their 
problem requirement. In the upcoming sections, we will 
discuss various classes of timetable scheduling problems 
and appropriate algorithms for those classes. 

 This paper is organised as follows: Section II describes the 
problem statement under scrutiny, Section III talks about 
related work done by other academic professionals and 
literature survey, Section IV deals with describing various 
extensions of evolutionary algorithms, comparison and use 
cases, and the results are presented in Section V. Section VI 
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concludes our research and an acknowledgement is made 
in this section.  

II. PROBLEM DESCRIPTION (HARD AND SOFT CONSTRAINTS) 

The Timetabling problem (TTP) is a special case of the 
Job Shop Scheduling problem (JSP) and like JSP, we need to 
assign a resource to an event. In the case of TTP, we have to 
assign a combination of [faculty, student, course, room] 
(resource) to a time slot (event). The total number of events 
is a product of the number of days and number of working 
hours. As the number of resources and events increases, 
their total number of possible combinations rise 
exponentially and a combinatorial explosion takes place. 

The timetable scheduling problem is an optimisation 
problem and we try to optimise two kinds of constraints, 
namely hard and soft constraints. Hard constraints are 
those constraints that can’t be violated and violation of 
which means that solution is infeasible and incorrect. On 
the other hand, soft constraints are those constraints that 
could be violated and violation of which means that though 
the solution is feasible, still it is a sub-optimal and better 
solution than the current solution exists.  

 Sample hard constraints: 

i. No two professors can attend the same room or the 
same batch at a time. 

ii. No two batches are assigned the same room or the 
same professor at a time. 

iii. No room can host multiple classes at a time. 

iv. No batch or professor should be assigned to 
multiple rooms at a time. 

v. Every day must have a break after three hours of 
continuous classes. 

vi. Lectures can only be conducted in the type of 
classroom allowed based on lecture type. 

vii. Each combination of batch and subject must be 
assigned respective minimum lectures. 

viii. Assigned room should have enough capacity to 
accommodate all students. 

 Sample Soft constraints: 

i. A professor should be assigned classes based on his 
preference of time. 

ii. There shouldn’t be more than 2 lectures of the 
same subject on a given day. 

iii. There should be a minimum of 3 lectures and a 
maximum of 8 lectures in a day. 

iv. There should be a minimum ideal time between 
lectures for both students and faculties. 

v. Rooms should be used efficiently and a minimum 
number of rooms should be used. 

vi. Lecture should be uniformly distributed among 
allowed days. 

vii. Each faculty should teach at least 3 days a week. 

viii. Schedule for Faculty and students shouldn’t be 
hectic and should have only limited lectures in a 
day. 

ix. Lectures and Lab of a subject must be assigned on 
the same day. 

x. Longer classes must be assigned at the start of the 
day. 

III. RELATED WORKS 

The idea of solving timetable scheduling problems with 
the help of algorithms was first introduced by Werra in 
1985[1]. Werra suggested dealing with timetabling 
problems using graphs and networks. After that, a large 
number of researchers had shown interest in solving 
timetabling problems using various algorithms and this led 
to the formation of PATAT (Practice and Theory of 
Automated Timetabling) [2] in 1995. Moreover, the 
International Competition of Timetabling was established 
with the help of PATAT in 2002 (ITC, 2002). Recently ITC 
2019 was conducted with the aim of stimulating research in 
the domain of complex timetable scheduling problems. 
Since 1985, various Meta-heuristics methods like Simulated 
annealing [3], Tabu search [4], Particle Swarm Optimisation, 
Genetic Algorithms, Memetic Algorithms are proposed to 
solve the timetabling problem.  

A. Tabu Search 

Daniel Costa in 1994 proposed basic Tabu Search to 
compute an operational timetable. To further improve 
results Zhipeng & Jin-Kao, in 2010[11], used tabu search to 
deal with the timetabling problem. They have broken down 
tabu search into three steps: initialization, intensification 
and diversification. In this case, intensification is used to 
search in local search space while the final diversification 
step is used to avoid getting stuck in a local optimum. On 
the other hand, some researchers tried working with a 
hybrid approach. For example, Sadaf Naseem Jat & 
Shengxiang Yang [12] worked on a hybrid Genetic 
Algorithm and Tabu Search approach, where they used 
Genetic Algorithm in the first step to generate an initial 
solution and in the second step Tabu Search is used to 
further improve the optimality of solution obtained in the 
first step.  
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B. Particle Swarm Optimization 

The particle swarm optimization (PSO) algorithm, 
proposed by Kennedy and Eberhart [16], is a metaheuristic 
algorithm based on the concept of swarm intelligence. It is 
of great importance noting that dealing with PSO has some 
advantages when compared with other optimization 
algorithms as it has fewer parameters to adjust. In the early 
1990s, several studies regarding the social behaviour of 
animal groups were developed. These studies showed that 
some animals belonging to a certain group, that is, birds 
and fishes, can share information among their group, and 
such capability confers these animals a great survival 
advantage. Inspired by these works, Kennedy and Eberhart 
[16] proposed in 1995 the PSO algorithm, a metaheuristic 
algorithm that is appropriate to optimize nonlinear 
continuous functions. After this algorithm was proposed, 
many modified versions were also proposed such as by 
Yuhui and Gireesha [17], which involved the application of 
weight to the main equation of the algorithm to make it 
more biased and to converge to an optimum point more 
quickly. The idea behind this weight is to divert the search 
for global optimum by the particles according to the 
problem to be solved, that is, instead of using the 
generalised approach for all problems, it tends to introduce 
a bias to the equation with weight value specific to that 
problem.  

C. Genetic and Memetic Algorithm 

A classical genetic algorithm-based approach was used 
by Esraa A. Abdelhalim in 2006 [5] to generate an optimal 
solution for Alexandria University. Here Esraa emphasised 
on maximizing resource utilization and found that 
timetabling problem is closely related with space 
optimisation problem as different approaches that are used 
in solving the space allocation problems can also be used 
for solving the timetabling problems. Moving forward, some 
researchers further tried to improve the behaviour of the 
classical genetic algorithm by improving various 
components of the genetic algorithm. For instance, Vinayak 
Sapru in 2010[6] used guided mutation in place of random 
mutation and found that by using guided mutation, the 
algorithm converges to a feasible solution in all cases and 
converges much faster. Similarly, Antariksha Bhaduri in 
2009[10] used the memetic algorithm to further improve 
the approach of finding an optimal solution. Antariksha 
implemented Genetic Artificial Immune Network (GAIN) 
and found that convergence rate became much slower for 
GA when it located a sub-optimal result. However, GAIN 
continued to converge at an almost similar rate until the 
valid solution was located.  

On the contrary, in classical genetic algorithms, each of 
the candidate solutions or chromosomes is a passive entity, 
that is, operators work in random fashion rather than 
focusing on the problem at hand. While in hybrid 
evolutionary algorithms or memetic algorithms candidate 
solutions work as an active entity, that is, operators are 

directed/guided and capable of performing local 
refinements. Therefore to convert a GA to a Memetic 
Algorithm (MA), one needs to modify its basic operators 
like mutation, selection, and crossover. For instance, Burke, 
E. & Newall [13] dissected basic mutation operator into 
light and heavy mutation operator and combined hill 
climbing to create a memetic algorithm for university exam 
timetabling. Similarly, Özcan, E. and A. Alkan [14] 
implemented violation directed mutation and violation 
directed hierarchical hill-climbing method and showed 
some promising results. According to Pablo Moscato [15], 
MA is close to a form of population-based hybrid genetic 
algorithm (GA) coupled with an individual learning 
procedure capable of performing local refinements. 

 Finally, the representation of a chromosome in the genetic 
algorithm also plays a significant role. A chromosome can 
be represented in one dimension as a binary string [7] or 
floating-point representation [8], or in two dimensions as a 
matrix [5], or in three dimensions as a cube [9].  

IV. PROPOSED SOLUTIONS 

A. Tabu Search 

Tabu search is an enhanced form of local search. In local 
search, we look into the immediate neighbourhood of the 
current solution in hope for a better solution. However, 
because of this, we have a risk of running into a local 
optimum. To deal with this tabu search was invented. Tabu 
search avoids visiting a non-optimal solution by 
maintaining a tabu list that consists of forbidden nodes. 
This tabu list is used for future reference to verify if a given 
candidate solution is already visited and found to be non-
optimal. Moreover, tabu search uses the concept of 
intensification and diversification where a non-optimal 
move is made to get out of local optima if no better move is 
available. 

Tabu search could also be used to create a university 
timetable. In tabu search, we first create a suboptimal 
timetable based on some heuristics. Then we create all 
neighbouring solutions, modifying the current solution with 
a single mutation. From this solution set, we select the best 
solution so far Sb. The Sb is verified against the tabu list, and 
if it is present in the tabu list then we go to the second-best 
solution, else we compare the Sb with the current solution. 
If Sb is better, we replace the current with Sb. At last, we 
check if the desired solution/optimal timetable is achieved, 
otherwise we repeat the process and keep on exploring the 
search space.  
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Fig. 1 Tabu Search Flow Diagram 

B. Particle Swarm Optimization 

The Particle Swarm Optimization (PSO) algorithm is 
inspired by the concept of swarm intelligence, often seen in 
animal groups. The PSO uses a swarm of particles to find a 
solution in search space, each particle looks into its local 
neighbourhood for a good solution. While also keeping 
track of global optima or best solution found so far, by 
communicating with the other particles. In each generation, 
a particle updates its position, with respect to its previous 
position and position of the other particles. The value by 
which any particle changes the position is defined by three 
terms. The first term is a product between parameter w 
(inertia weight) and particle’s previous velocity, which is 
the reason it denotes a particles’ previous motion into the 
current one. The individual cognition term, which is the 
second term, is calculated by means of the difference 
between the particle’s own best position and its current 
position. One may notice that the idea behind this term is 
that as the particle gets more distant from the best position, 
the difference between best position and current position 
must increase; therefore, this term increases, attracting the 
particle to its best own position. Finally, the third term is 
social learning. Because of it, all particles in the swarm can 
share the information of the best point achieved regardless 
of which particle had found it. Its format is just like the 
second term and is defined by the difference between 
global best position and particle's current position. 

One of the use cases of particle swarm optimization is 
the university timetable scheduling problem. Here we start 
by generating an initial population of potential 
solutions/particles (swarm), where each particle 

corresponds to a randomly generated timetable. In each 
generation, two kinds of mutation are performed: in the 
first mutation for each particle, a class is swapped from the 
local best solution, meanwhile, in the second mutation, a 
class is randomly selected from global best and swapped 
with a class in the current timetable. This process is 
repeated until further mutations don’t result in any 
improvement of particle fitness or maximum iterations are 
completed.  

 

Fig. 2 Particle Swarm Optimization Flow Diagram 

C. Genetic Algorithm 

Genetic algorithm is derived from the Darwinian theory 
of evolution. In GA we create an initial population of 
random individuals and solutions. Then we calculate fitness 
for each of the individuals in the current population and 
after that, we select the fittest individual among the 
population using a selection operator based on the 
resultant fitness value. Candidates with the highest fitness 
will be directly moved to the next generation. While 
candidates with high yet not the best fitness value will be 
used by crossover operators to generate new individuals. 
Then a mutation operator is used to induce random 
changes to the population, to ensure diversity. Finally, 
candidates obtained after applying all previous operators 
will become part of the next generation. We will check this 
new population if desired fitness value is achieved, if not 
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then the process will be repeated until the desired optimal 
solution is achieved.  

As explained, this process can be used to generate an 
optimal university timetable. Here we first create an initial 
population consisting of random infeasible timetables. We 
calculate the fitness value of each candidate using a fitness 
function, which measures the number of collisions among 
classes. From this pool, we select timetables with least 
collision of classes or highest fitness value (that is, no. of 
constraint violation), chosen candidates are termed as 
elitist individuals and directly become part of the next 
generation. Moving on, we use selection schemes like 
tournament selection to randomly select a few fit 

individuals that were left out in initial selection. With the 
help of crossover operators, we swap classes between two 
times tables to generate a new group of individuals to 
create a new population. Then we apply the mutation 
operator with a low probability. Mutation operators 
randomly swap classes within a timetable to ensure genetic 
diversity and avoid getting stuck into local optima. Finally, 
we calculate fitness value or collisions among the new 
generation and if a feasible timetable is achieved then the 
process could be stopped, else the cycle is repeated, 
starting from crossover until a feasible solution is not found. 
The feasible solution here refers to a timetable that satisfies 
all kinds of constraints.  

 

 

Fig. 1 Genetic Algorithm Flow Diagram 

D. Memetic Algorithm 

Memetic algorithms are extensions of genetic 
algorithms. It’s a hybrid algorithm that combines GA with 
local search or heuristic search like tabu search, to avoid 
premature convergence. Implementation of MA is similar to 
GA, however, unlike GA, MA uses advanced guided 
operators. Like GA, we first create an initial population, 
then the fitness of all individuals is calculated, and fittest 
individuals are separated and moved forward. Then the 
selection operator is used to select candidates for the 
crossover, but the rest of the process differs from this point 
forward. Crossover operator in MA is guided and only 
swaps best subsections of chromosomes that guarantee the 
highest fitness after a crossover operation. Similarly, the 
mutation operator is also guided and before performing a 
mutation, checks if the resulting mutation leads to greater 
fitness; if the not different mutation is tried. After that, a 
local search is used to find a better solution in the 
neighbourhood of the current solution. If a candidate with 

higher fitness is identified then the given candidate is 
replaced with this newly found candidate. In the end, we 
apply fitness function on the newly generated population. If 
the population achieves the highest or lowest fitness value 
based on what kind of fitness function we are trying to 
achieve, that is, maximising or minimising function, then we 
stop the execution, else we reiterate until an expected 
solution is found.  

Additionally, the aforementioned processes can be 
implemented for university timetabling. Just like classical 
GA, we will create an initial population of sub-optimal 
timetables from which we will select new individuals 
according to their fitness for the next generation. However, 
for the upcoming steps, guided operators will be used. 
Consequently, the crossover operator will only swap those 
classes between different candidates/timetables that will 
result in higher fitness. Similarly, the mutation operator 
will also use heuristic knowledge to swap classes in a 
timetable and only perform mutations that lead to fitter 
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individuals. Then we will use a local search algorithm to 
generate a better individual or meme, that can encourage a 
faster convergence. At last, we will check the fitness value 

of the latest spawn population to decide if iteration should 
be terminated or the solution needs further refinements. 

 

 

Fig. 4 Memetic Algorithm Flow Diagram 

TABLE I 
COMPARISON OF ALGORITHMS 

Factors Tabu Search Particle Swarm 
Optimization 

Genetic 
Algorithm 

Memetic 
Algorithm 

(1+1) Genetic 
Algorithm 

Average 
iterations 

Large (5000-7000) Medium (500-
1000) 

Low (50-100) Medium (500-
1000) 

Large (3000-
6000) 

Initial 
population size 

Large (>500) Medium (30) Large (100) Large (100) Small (2) 

Optimality of 
final solution 

Local optimum Global optimum Global optimum Global 
optimum 

Local optimum 

Running time Lowest Low High Highest Low 
Individual type Simple Simple to complex Simple to Highly 

complex 
Simple to 
Highly complex 

Simple to Highly 
complex 

Biological 
process Inspired 
from 

Simulated annealing Swarm intelligence Natural selection Natural & 
cultural 
evolution 

Natural 
evolution 

Factors for next 
generation 

Tabu list or list of 
infeasible solutions 

Previous velocity, 
particle’s current 
optimum and 
global optimum 

Fitness of new 
individuals 

Fitness of new 
individuals and 
tabu list 

Fitness of next 
offspring  

Type of problem Large nonlinear 
optimization 

Nonlinear 
continuous 

Global 
optimization 

Multi-class, 
multi-objective 
feature 
selection 

Nonconvex 
optimization in 
high dimension 
and black box 
scenarios 

Constraints 
optimization 
level 

Hard only Mostly hard and 
some soft 

Hard and soft Hard and soft Mostly hard and 
some soft 
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V. RESULTS 

Tabu search (TS) algorithm starts with creating an 
initial feasible timetable using a greedy approach. Thus is 
best suited for problems where there are a lower number of 
resources to optimise and fewer number of constraints to 
satisfy, for example, exam scheduling problems, job shop 
scheduling, dynamic space allocation, etc. Zhipeng and Jin-
Kao in 2010[19], implemented an adaptive tabu search 
(ATS) algorithm which dynamically optimises various 
parameters during evaluation. They have tested their 
algorithm on 4 personal instances and 14 public 
competition instances of the ITC-2007. They found that for 
smaller data sets TS performs like a normal local search 
(LS). However for large data sets, LS outperforms TS and is 
able to achieve slightly better fitness value. But then they 
improved TS by creating a hybrid algorithm, where they 
provided adaptive characteristics to classical TS. They were 
further able to optimise their algorithm and were able to 
achieve even better fitness values than LS with ATS. 

Particle Swarm Optimization (PSO) algorithm starts 
with creating an initial infeasible timetable using a random 
approach. Similar to tabu search, PSO is best suited for low 
resources and few constraints. As each dimension in which 
a particle can move corresponds to one of the possible 
resources, therefore as the number of resources increase, 
dimension increases and a combinatorial explosion takes 
place. Nonetheless, because PSO starts with initial random 
solutions it is better able to optimise soft constraints as 
compared to tabu search, still it fails to create a feasible 
solution when a large number of soft and hard constraints 
need to be satisfied simultaneously. That’s why, PSO is best 
suited for creating timetables for small universities with 
more hard constraints to work on and less soft constraints 
to satisfy. Chen, Ruey-Maw & Shih, Hsiao-Fang in 2013[20] 
created Particle Swarm Optimization with Local Search to 
address timetabling problems at their university. They have 
compared conventional PSO with a hybrid solution (that is, 
combination of PSO and local search). Their findings 
suggest that though normal PSO is able to find a solution, it 
often runs into a local optima. Therefore to improve quality 
of solution and avoid premature convergence local search 
can be used in conjunction with PSO. 

 Genetic algorithm (GA) was created to resolve the 
challenges associated with PSO and TS. Just like PSO and TS, 
GA starts with a large initial population. However, it applies 
various operators like mutation, crossover, and selection to 
find the most feasible solution. With the help of crossover 
GA is capable of searching large search space as compared 
to TS. Meanwhile the mutation operator ensures that GA 
don’t get stuck in local optima like PSO. Hence, classical GA 
is better than standard PSO and TS. On the contrary, GA is 
slower as compared to previous algorithms and requires 
more computation power to search a larger search space. 
That’s why GA is better suited for problems that require the 
most optimal solution and where we have sufficient time to 
calculate the solution. Generally universities are always 

aware of their resources like rooms, faculties, courses and 
usually timetable creation starts months before an actual 
timetable is needed. Wang Wen-jing in 2018 worked on an 
improved adaptive genetic algorithm (AGA) for course 
scheduling. His findings suggest that AGA is able to create 
better timetables than GA and these timetables along with 
satisfying all hard constraints also satisfy all soft 
constraints to a great extent, that is, greater teacher 
satisfaction, course dispersion, class priority in course 
scheduling, but AGA is not always superior and takes more 
time than GA. Finally, Wang was able to identify optimum 
parameters for GA, that is average generation is around 150 
to 250 and average population around 100 to 150.  

 Memetic algorithms (MA) are a more advanced form of GA. 
In most cases, MA is the result of combining GA with any 
other evolutionary or optimisation technique, for instance, 
MA is a hybrid form of GA and TS. By implying local or tabu 
search MA converges much faster than GA, meanwhile, 
providing us with timetables of similar fitness. Moreover, 
GA as a part of MA ensures that greater width of search 
space is covered and TS/Hill climbing part ensures that 
greater depths are searched. Still, MA is computationally 
more expensive than GA because of the added local search 
overhead. Burke, Newall and Weare in 2005[22] used the 
memetic algorithm for exam timetabling. They have used 
MA on really large datasets obtained from various 
universities, at the same time, they compared MA results 
with a Multi start random descent algorithm. According to 
their observations, MA was able to generate solutions in all 
cases while random descent was unable to find a solution 
even when provided with more time and computation 
power. Also according to Burke, MA uses knowledge from 
the problem domain for self-improvement of solution. In 
this way, MAs are more guided as compared to GAs.  

VI. CONCLUSION AND FUTURE SCOPE 

 We have seen implementation of various evolutionary 
algorithms and how they can be used to solve timetabling 
problems. Additionally, we have discussed work of other 
researchers in this domain. From our analysis, we have 
concluded the following points.  

 There is no one fit for all and one has to identify 
suitable algorithms for their use case by analysing 
factors like their data size, computation time, 
number of constraints, and level of accuracy. 

 For complex and highly constraint timetabling 
problems fitness value follows the given order MA > 
GA > PSO > TS. 

 When PSO and TS were mixed with other 
metaheuristic search methods, they were able to 
generate results similar to GA and MA. 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 11 | Nov 2020                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2020, IRJET      |       Impact Factor value: 7.529      |       ISO 9001:2008 Certified Journal       |     Page 1358 

 The basic difference between all these algorithms is 
the width and depth of the search space they cover 
when finding an optimal solution. 

All of the comparisons we have made are highly generic 
and should only be used for basic understanding of 
algorithms. For deeper understanding and more accurate 
results one should refer to our referenced research papers 
in the reference section. Each of the algorithms in study has 
its own set of pros and cons, however, one can also combine 
these algorithms to generate new algorithms and further 
optimise their use case. Likewise, recently many 
researchers are working with hybrid approaches and have 
found encouraging results, but still these researches are in 
their nascent stage and that is why they aren't covered by 
our study and were left for future study. 

REFERENCES 

[1] Werra, D.D., 1985. An introduction to timetabling. Eur. 
J. Operat. Res., 19: 151-162. DOI: 10.1016/0377-
2217(85)90167-5  

[2]  “International series of conferences on the practice 
and theory of automated timetabling 
(patat),”https://patatconference.org/#:~:text=PATAT
%20Conferences,of%20computer%2Daided%20timet
able%20generation.  

[3] D. Zhang, Y. Liu, R. MHallah, and S. Leung, “A simulated 
annealing with a new neighbourhood structure based 
algorithm for high school timetabling problems,” 
European Journal of Operational Research, vol. 203, no. 
3, pp. 550–558, 1999. 

[4] G. White, B. Xie, and S. Zonjic, “Using tabu search with 
longer-term memory and relaxation to create 
examination timetables,” European Journal of 
Operational Research, vol. 153, no. 1, pp. 80–91, 2004  

[5] Abdelhalim, Esraa & El Khayat, Ghada. (2016). A 
Utilization-based Genetic Algorithm for Solving the 
University Timetabling Problem (UGA). Alexandria 
Engineering Journal. 55. 10.1016/j.aej.2016.02.017. 

[6] V. Sapru, K. Reddy and B. Sivaselvan, "Time table 
scheduling using Genetic Algorithms employing 
guided mutation," 2010 IEEE International Conference 
on Computational Intelligence and Computing 
Research, Coimbatore, 2010, pp. 1-4, doi: 
10.1109/ICCIC.2010.5705788. 

[7] J. Holland, Adaptation in Natural and Artificial Systems. 
Ann Arbor, MI: University of Michigan Press, 1975. 

[8] Z. Michalewicz, Genetic Algorithms + Data 
Structures=Evolution Programs. Springer-Verlag, New 
York, 1994.  

[9] B. Sigl, M. Golub and V. Mornar, "Solving timetable 
scheduling problem using genetic algorithms," 
Proceedings of the 25th International Conference on 
Information Technology Interfaces, 2003. ITI 2003., 
Cavtat, Croatia, 2003, pp. 519-524, doi: 
10.1109/ITI.2003.1225396. 

[10] Bhaduri, Antariksha. (2009). University Time Table 
Scheduling Using Genetic Artificial Immune Network. 
ARTCom 2009 - International Conference on Advances 
in Recent Technologies in Communication and 
Computing. 289-292. 10.1109/ARTCom.2009.117. 

[11] Z. Lu¨ , J. Hao, Adaptive tabu search for course 
timetabling, Eur. J. Oper. Res. 200 (2010) 235–244  

[12] Jat, S.N., Yang, S. A hybrid genetic algorithm and tabu 
search approach for post enrolment course 
timetabling. J Sched 14, 617–637 (2011). 
https://doi.org/10.1007/s10951-010-0202-0 

[13] Burke, E. & Newall, J. & Weare, R.. (2006). A memetic 
algorithm for university exam timetabling. 10.1007/3-
540-61794-9_63.  

[14] Özcan, E. and A. Alkan. “A Memetic Algorithm for 
Solving a Timetabling Problem: An Incremental 
Strategy.” (2007). 

[15] Moscato, P. (1989). "On Evolution, Search, 
Optimization, Genetic Algorithms and Martial Arts: 
Towards Memetic Algorithms". Caltech Concurrent 
Computation Program (report 826). 

[16] J. Kennedy and R. Eberhart, "Particle swarm 
optimization," Proceedings of ICNN'95 - International 
Conference on Neural Networks, Perth, WA, Australia, 
1995, pp. 1942-1948 vol.4, doi: 
10.1109/ICNN.1995.488968. 

[17] Shi, Yuhui & Obaiahnahatti, B.Gireesha. (1998). A 
Modified Particle Swarm Optimizer. Proceedings of the 
IEEE Conference on Evolutionary Computation, ICEC. 6. 
69 - 73. 10.1109/ICEC.1998.699146.  

[18] S. Droste, Th. Jansen, I. Wegener, A rigorous 
complexity analysis of the (1+1) Evolutionary 
Algorithm for linear functions with Boolean inputs, in: 
Proc. IEEE Internat. Conf. on Evolutionary 
Computation ICEC ’98, IEEE Press, Piscataway, NJ, 
1998, pp. 499–504.  

[19] Zhipeng Lü, Jin-Kao Hao, Adaptive Tabu Search for 
course timetabling, European Journal of Operational 
Research, Volume 200, Issue 1, 2010, Pages 235-244, 
ISSN 0377-2217, 
https://doi.org/10.1016/j.ejor.2008.12.007. 
(http://www.sciencedirect.com/science/article/pii/S
0377221708010394) 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 11 | Nov 2020                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2020, IRJET      |       Impact Factor value: 7.529      |       ISO 9001:2008 Certified Journal       |     Page 1359 

[20] Chen, Ruey-Maw & Shih, Hsiao-Fang. (2013). Solving 
University Course Timetabling Problems Using 
Constriction Particle Swarm Optimization with Local 
Search. Algorithms. 6. 227-244. 10.3390/a6020227.  

[21] Wen-jing, Wang. (2018). Improved Adaptive Genetic 
Algorithm for Course Scheduling in Colleges and 
Universities. International Journal of Emerging 
Technologies in Learning (iJET). 13. 29. 
10.3991/ijet.v13i06.8442.  

[22] Burke E.K., Landa Silva J.D. (2005) The Design of 
Memetic Algorithms for Scheduling and Timetabling 
Problems. In: Hart W.E., Smith J.E., Krasnogor N. (eds) 
Recent Advances in Memetic Algorithms. Studies in 
Fuzziness and Soft Computing, vol 166. Springer, 
Berlin, Heidelberg. https://doi.org/10.1007/3-540-
32363-5_13

 


