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Abstract—Data compression is done in sensors used in ECG 
healthcare devices for faster wireless transmission. The 
paper presents an ultra-low power R peak detector and an 
ECG dictionary based hybrid compression architecture for 
internet of things (IoT) healthcare devices. Data 
compression is done in sensors used in ECG IoT health care 
devices for faster wireless transmission. Ultra-low power 
electrocardiogram (ECG) processing hybrid architecture 
with an ample level of accuracy is a necessity in Internet of 
Things (IoT) medical wearable devices. An absolute-value 
curve length transform (A-CLT) is proposed that effectively 
intensify the QRS complex detection with minimized 
hardware resources. QRS detection is accomplished by using 
adaptive thresholds in the A-CLT transformed ECG signal. 
The proposed architecture requires adders, shifters and 
comparators only. No multipliers required. A lossless 
compression technique is included into the proposed 
architecture that use the ECG signal first derivative, variable 
length encoder and dictionary based code compressor. 
Dictionary code compression is done using bitmask 
algorithm. Compression architecture help IoT medical 
devices to achieve ultra-low power operation (in mW 
ranges) and minimize the data needed to be transmitted to 
minimize power consumption for devices equipped with 
wireless transmitters. The proposed architecture is 
synthesized using standard-cell-based flow. This technique is 
used in ECG based IoT healthcare devices such as 
implantable cardio-converter defibrillator, pacemaker, 
biventricular pacemaker etc 

Key words:—Electrocardiogram, R peak, absolute value 
curve length transform, variable length encoder, dictionary 
code compression, code word length constrained bitmask 
code compression. 

1. INTRODUCTION 

ULTRA low power medical devices are essential in the 
epoch of internet of things (IoT). They achieve ultra-low 
power operation (mw ranges) and compress the data to be 
transmitted to minimize power consumption for devices 
equipped with wireless transmitters. Healthcare sensors 
apprehend active physiological data for monitoring and 
diagnosing patients. IoT transfers data to cloud-connected 
servers. Data compression is done in sensors used in ECG  

 

IoT health care devices for faster wireless transmission. 
ECG is utilized in cardiac arrhythmia prediction. Detect by 
accurately extracting ECG intervals, amplitudes and wave 
morphologies of the different ECG signal components such 
as the P, QRS, and T waves [1]. 

 

Fig -1: ECG analyzing mechanism 

The QRS complex is a principal component of the cardiac 
cycle. They are used as a reference and represent the 
depolarization of ventricles in the heart. The time required 
for the ventricles to depolarize defines the QRS width or 
interval. One of the efficacious ways of reducing energy 
consumed in wireless transmitters is to reduce the data 
transmitted through data compressors. Another option for 
lessening transmitted or processed data is to decrease the 
number of samples. Generally microcontrollers could be 
the central processing unit of an IoT device. IoT healthcare 
platforms enables minimum local processing and transfers 
data to cloud connected servers that help resolve 
drawbacks of holter monitors and similar devices. Various 
platforms of IoT architectures for healthcare were 
proposed as in [2]. IoT healthcare connects patients, 
doctors, and devices according to the ideology as shown in 
Figure 1 and 2. IoT infrastructure extends from sensors, 
communication devices up to central servers which 
assimilate efficient devices. 

IoT platform challenges extend from system engineering 
that elaborate signal acquisition, local processing, 
transmission, central processing and generating feedback. 
Each of these stages has its own challenges particularly 
with the increasing number of connected devices. 
However, existing micro- controllers have an active power 
dissipation of greater than 100mW and a leakage power of 
greater than 1mW which is much higher power dissipation 
than custom ASIC solutions. The main objective of this 
project is to present an ECG processing and compression 
architecture that can help IoT medical devices to attain 
ultra-low power operation. Compress the data needed to 
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be transmitted to minimize power consumption for 
devices equipped with wireless transmitters. 

 

Fig -2: IoT healthcare platform 

The time required for the ventricles to depolarize specify 
the QRS width or interval where it typically lasts between 
80ms to 120ms[3]. Option for compressing transmitted or 
processed data is to decrease the number of samples. In 
[4], a non-uniform time sampling technique is proposed 
with adaptive sampling rate to lower the energy 
consumption of the sampling process. Such scheme is 
applicable for slowly varying signals. In [5] compressed 
sensing is presented as a probable technique for reducing 
the sample count that has an advantage in reducing the 
overall power dissipation. The processed ECG data or 
extracted feature in the IoT platform is transmitted 
wirelessly. Wireless data transmission is the most energy-
hungry part in IoT devices. One of the effective ways of 
reducing energy consumed in wireless transmitters is to 
minimize the data transmitted through data compressors. 

2. SUMMARY OF EXISTING SYSTEM 

2.1 System Architecture 

QRS detection is a challenging task due to the backing 
reasons. ECG being low amplitude in nature is 
contaminated by noise and artifacts such as electrode 
noise, motion artifacts, muscle noise, power-line 
interference, ADC quantization noise and noise in 
acquisition devices. Moreover, QRS waves have wide 
morphological variation among various people with 
different health conditions. Fig. 3 shows the existing 
system architecture.  

 

Fig -3: Existing system architecture 

2.2 Summary of QRS Detection Architecture 

2.2.1 Discrete Wavelet Transform: Wavelet Transform is 
presented as a tool to analyze ECG signals. QRS detection 

based on Quadratic Spline Wavelet Transform is 
reported[6]. Even though the system achieve high 
sensitivity for QRS detection when validated using MIT-BIH 
database, its implementation is complex that requires scale-
3 wavelet transform and maximum modulus recognition. 
Its operating power consumption is 0.85μ W. 

2.2.2 Differentiation and Threshold: Time domain 
threshold along with filtering (first derivative, second 
derivative, both derivatives, matched filter, etc.) are some 
of the earliest techniques and are suitable for real-time 
implementation. It was one of the most widely researched 
and an implemented technique as it was robust in detecting 
QRS. In [7] QRS detection architecture QRS detection is 
done using differentiation, moving average and squaring. In 
[8] Pan and Tompkins algorithm (PAT) was proposed 
which was one of the most widely researched and 
implemented techniques as it is robust in detecting QRS [9], 
[10]. Dynamically adaptive threshold are applied to a 
squared ECG signal in order to detect QRS peaks. However 
these approaches still use hardware intensive operations 
such as multiplication and division. 

2.3. Summary of ECG Compression Architectures 

2.3.1 Lossless Compressor Based on Linear Slope 
Predictor: It includes a fixed length packaging scheme for a 
serial transmission. The architecture was implemented in 
0.35μm technology and achieves a compression ratio of 
1.25 × at a power consumption of 535nW from a supply of 
2.4V for ECG signals that are sampled at 512 Hz. The 
number of data reduction after encoding is very less in this 
lossless compressor compared to proposed system.  

2.3.2 Lossless-Entropy Encoder with Adaptive 
Predictor: This system [11] presents in a unique lossless 
ECG encoder based on adaptive predictor and two-stage 
entropy encoder. But it achieved a compression ratio of 
1.34. In the proposed system the number of samples after 
encoding is less and encoding is faster. 

2.4 Ultra-Low Power Design Techniques 

Operating at a low frequency reduces the supply voltage 
and has advantage in reducing the total power 
consumption. 

 PTotal = Pdyn + Pleak (1) 

 Pdyn   C × f × V2 (2) 

 Pleak   Ileakage × V (3) 

In duty-cycled ultra-lower power systems, the average 
power consumption is given. In such duty-cycled systems 
there is a trade-off between ON-time, leakage power and 
active power. 

 Pave = Palways-on + Psleep + (Eactive ÷ Twkup) (4) 
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Lowest energy operating point could be obtained 
depending on the design complexity and power dissipation 
of each part. Transmission could be done periodically.  

3. THE PROPOSED SYSTEM 

 

Fig -4: Proposed system architecture 

3.1 System Architecture 

The proposed QRS detectors robust enough to deal with 
the noise and artefacts compared to existing method is 
shown in fig. 4. Filtering has been widely used especially 
for removing low-frequency noise, baseline drift, and high-
frequency interference. Transformation is applied to 
enhance a portion of the ECG waves. In this proposed 
technique the pre-processing or filtering and 
transformation are lumped into one component forming a 
modified version of curve length transform (CLT). Hybrid 
compressor consists of an encoder along with dictionary 
format by which the power and area are reduced[12]. 

3.2 Algorithm Formulation of R Peak 

Fig. 5 is Absolute Value Curve Length Transform (A-CLT) 
which determines the length of successive points of an ECG 
signal henceforth provides a way to characterize the high 
slopes and points that have significant deviation from the 
baseline. The QRS is characterized by the signal component 
with the highest slope and amplitude above all other ECG 
wave components. The A-CLT utilizes this unique behavior 
of the QRS complex to boost the QRS complex and suppress 
other ECG wave components. By choosing a proper value 
for C, a particular portion of the signal is improved and 
boosted compared to the rest of the signal. The proposed 
A-CLT performs transformation followed by peak 
detection using adaptive threshold. 

 

Fig -5: A-CLT Graph 

3.3 A-CLT Architecture 

 

Fig -6: Proposed Absolute Value CLT 

Figure 6 shows the proposed A-CLT architecture for 
detecting the QRS complex. It performs transformation 
followed by QRS peak detection using adaptive threshold. 
The transformation is done using derivative, absolute 
value and integration all lumped into one realization of the 
A-CLT. The transformation distinctively enhances QRS 
complex even for noisy ECG signals that is corrupted with 
baseline wander. Its unique inherent behaviour removes 
the need for additional complicated circuits for high pass 
or low pass filters. All the computations for the 
transformation are performed using addition and shifting. 
Moreover, comparison is required for detecting QRS-peaks 
using thresholds. There is no need for multiplication, 
division or square root. Hence its hardware 
implementation requires only adders, shifters and 
comparators. These components are less hardware 
intensive relative to multipliers, dividers and square-root 
functions. The integration over a window in the proposed 
architecture is pipelined. Pipelining enables us to 
transform directly whenever there is a new ECG sample. 
Accordingly, the required clock frequency for the 
architecture is equal to the sampling frequency of the 
incoming ECG signal. The sampling frequency of the 
system is set to 250 Hz. This is the lowest operating 
frequency possible for such configuration. Such a low 
operating frequency reduces the dynamic power 
dissipation and the overall system power. 

3.4 The QRS Peak Detection 

In the proposed system QRS detection is performed using 
adaptive threshold. The threshold is updated whenever a 
new beat it detected and is proportional to the mean of the 
previously detected QRS peaksis repoted in [13]. The QRS 
detector is robust enough to deal with the noise and 
artifacts mentioned in the previous section. Filtering has 
been widely used especially for removing low-frequency 
noise, baseline drift, and high-frequency interference. Our 
proposed system provides optimized QRS detection 
architecture that could deal with all the artifacts with 
minimum hardware resources without compromising the 
accuracy. An optimum threshold factor is obtained using 
the standard database from physionet. The experiment is 
done on MIT-BIH.  
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Fig -7: Schematic Representation of an ECG Wave 

The threshold is evaluated based on the equation given as: 

Thi = Thfactor   mean ∑   
     peaksk (5) 

Figure 7 shows the schematic representation of an ECG 
wave. Here the ECG wave consists of few intervals. They 
are PR interval, PR segment, QT interval, ST segment and 
QRS complex. Variation in width of each wave is due to 
variation in different parts of heart.  

3.5 Optimization Parameters 

According to the proposed architecture, there are two 
parameters that need optimum selection. These are the 
window size and threshold factor. Note that for a fixed 
window the threshold factor has a major impact on wave. 

3.6 ECG Hybrid Compression Architecture 

The term hybrid means combination of variable length 
encoder and dictionary based code compression technique. 
Proposed hybrid compression architecture is shown in Fig. 
8. The system takes the first derivative and split the 
sequence in group of eight bits then does an entropy 
(variable bit length) compression. Then output from 
encoder is combined together and forms a large sequence. 
This sequence is again grouped in eight bits to generate 
dictionary code. Here undergo CLCBCC with MBSDS. Then 
dictionary code compressed data is loaded into load 
register and output is serially fed to the transmitter. The 
1st derivative requires only adders. The entropy encoder 
requires comparators or priority encoder and dictionary 
code compression which could make it easily 
implemented.  

 

Fig -8: Proposed Hybrid Compression Architecture 

 

Fig -9: Variable Length Encoder Flowchart 

Table -I: Encoder Output 

 

3.7 Variable Length Encoder 

The variable length encoder consists of two blocks. They 
are compare value followed by set code length. The 
derived ECG signal is fed to the encoder block. Less 
number of bits is used for low amplitude signals and more 
number of bits is used for large amplitude signals. Such 
encoding reduces the code word length required to 
represent the whole ECG signal. Therefore reduces the 
power consumption of medical health care devices while 
wireless transmission. The variable length encoder 
flowchart is given in fig. 9. 

The inserted data should lie within the intervals given in 
the flowchart. On data insertion, if the data lies between the 
interval -3<x(i)<2 then its code word length is last two bits 
of original inserted data. Otherwise, that is if it doesn’t lie in 
the 1st interval the data is jumped to the next interval -
5<x(i)<4 and its code word length is last three bits of 
original data. The comparator code is detailed in table I.  

By this process the 16000 bits of ECG signal is compressed 
to 9999 bits. There is a reduction of 5999 bits by this 
encoder technique. Further reduction is accomplished by 
the dictionary based code compression. 

3.8 Dictionary based code compression Algorithm  

Dictionary based code compression Algorithm used along 
with variable length encoder reduces time consuming and 
can decrease area usage. Dictionary code compression is 
done using bitmask algorithm is reported in [14]. 
Depending on the type of transmission technique, an 
identifier could be added to mark the beginning and end of 
the decoded variable length data bits. A small separated 
dictionary and variable mask numbers are used with the Bit 
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Mask algorithm to reduce the code word length of high 
frequency instructions. Variable mask numbers are used to 
eliminate the encoding redundancy. 

 

Fig -10: Specific Architecture for CLCBCC 

The combination of these methods is called as the code 
word length constrained bitmask code compression 
(CLCBCC). Compressing the high-frequency instructions 
with the same code word length as other low-frequency 
instructions will result in inefficient compression. To 
overcome this problem, these high-frequency instructions 
are separated into another small dictionary to obtain 
shorter code word lengths. Two luts are used for the bit 
mask approach as shown in fig. 10. A large lut is used to 
compress low frequency instructions, and a small LUT is 
used to compress the extremely high-frequency 
instructions. The specific dictionary architecture for the 
CLCBCC is shown in Fig. 10. 

The encoding format is shown in Fig. 11, which contains 
four situations, such as uncompressed, matched with small 
dictionary, matched with large dictionary, and matched 
using a variable number of masks. 

Dictionary based code compression algorithm is given as: 
inputs - 8-bit instruction symbols, small dictionary size, big 
dictionary size, mask types. 

OUTPUT: Compressed code words 

BEGIN 

STEP 1: Calculate the frequency distribution of all 
instruction symbols 

STEP 2: Select the highest unique frequency symbols into 
the small dictionary based on the step 1. STEP 3: For every 
unique instruction symbols which are not selected into the 
small dictionary, use the big dictionary or LUT. 

STEP 4: Use the bitmask based method to compress all 
instructions based on current dictionaries and mask 
setting. 

STEP5: Return the compressed code words. 

END 

Figure 12 shows an example of selection using mixed bit 
saving dictionary selection. All symbols in this example are 
8 bit wide, the dictionary contained 256 entries, only one 
2-bit mask was used, and the overhead of the identification 
tag is 2-bit. After each symbol transformation to the nodes, 
each node contained its frequency value. If the vector is bit 
masked then its masking position, mask value and index 
value is stored. 

Table -2: Identification Tag 

BIT TYPE IDENTIFICATION TAG 
Uncompressed bit 00 
Compressed with 
small LUT 

01 

Compressed with big 
LUT 

10 

Use bit mask 11 
 

 

Fig -11: Dictionary Encoding Format 

 

Fig -12: CLCBCC with Dictionary Format 

If the vector is uncompressed, the sequence as it is stored. 
And the vectors mostly occurring or high frequency is 
stored in small LUT indexed as 0. Also the vectors with low 
frequency is stored in big LUTs indexed as 0 and 1.Table II 
shows the indentification tag provided for each bit. .On 
dictionary code compression the 9999 bits get compressed 
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to 6459 bits. By the encoder and dictionary compressor a 
drastic variation is attained in area, power and delay 
compared to previous system. 

4. PERFORMANCE AND RESULTS 

To evaluate the performance of the algorithms, manually 
annotated ECG signals from physionet MIT-BIH Arrhythmia  

Database and QT database are used [15]. The MIT-BIH 
database contains randomly selected subjects as well as 
subjects with known arrhythmia that have clinical 
significance. 

Table -3: Compressor Comparison with Existing Work 

 EXISTING SYSTEM PROPOSED SYSTEM 

Area  15,095 6,270 

Power 720mW 354mW 

delay 15.193nsec 13.074nsec 

 

Moreover, the subjects are both men and women aged 
between 22 - 89 years. It has been widely used as a 
standard database for evaluating ECG QRS detectors. Table 
III shows the comparison of the proposed compressor with 
existing work. The proposed lossless compression 
architecture consumed only 354mW when operating at 
frequency of 75.485MHz. The proposed system consists of 
a dictionary compressor followed by the entropy encoder. 
However the compressor is part of a complete ECG 
processing system. Since the compressor subsystem 
performance such as power, delay and area are used for 
comparison. Fig 13, 14 and 15 shows the output of area, 
delay and power of the proposed system. Fig 16 and 17 
shows the output waveform which is the ECG analog and 
digital waveform from which the R peak is detected. 

 

Fig -13: Power consumption 

 

Fig -14: Delay 

 

Fig -15: Area 

 

Fig -16: Output ECG analog waveform 

 

Fig -17: Output ECG digital waveform

5. CONCLUSION 

This project presents a novel real-time QRS detector and 
ECG hybrid compression architecture for energy 
constrained IoT healthcare wearable devices. A novel 
absolute-value curve length transform (A-CLT) enhances 
the QRS complex detection with minimized hardware 

resources. The proposed architecture implementation 
requires only adders, shifters, and comparators and 
avoided the need for any multipliers. The QRS detection 
is accomplished using adaptive thresholds in the A-CLT 
transformed ECG signal. Furthermore, a lossless 
compression technique was incorporated into the 
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proposed architecture that uses the ECG signal first 
derivative and dictionary based variable length encoder.  

Compression architecture help IoT medical devices to 
achieve ultra-low power operation (in μW or nW ranges) 
and minimize the data needed to be transmitted to 
minimize power consumption for devices equipped with 
wireless transmitters. The proposed architecture was 
synthesized using standard-cell-based flow. This 
technique is used in ECG based IoT healthcare devices 
such as implantable cardio-converter defibrillator, 
pacemaker, biventricular pacemaker etc. Expected 
average compression ratio of 2.05 when evaluated using 
MIT-BIH database. Proposed QRS detection architecture 
was implemented using 65nm low-power process. 
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