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Abstract - This is a brief account of a study of quadratic 
Boolean modules over Boolean like rigs. This study can be 
understood as a kind of synthesis of Subrahmanyam's[5] 
papers on Boolean vector spaces and Gopala Rao's paper[3] 
on Vector spaces over a regular ring. As to terminology, I 
differ from both authors. The reasons are as follows. The 
notions "vector space" and "modules over a ring" have a 
very precise and widely accepted meaning in algebra and I 
don't want to divert from common use. On the other hand, 
the algebraic structures of this study have much in common 
with modules over a ring. To highlight their specific 
features. I have decided to introduce the concept of a 
quadratic Boolean modules. Why this was chosen will be 
made clear in the course of this text. It turns out that much 
of the results known for Boolean rings and regular rings 
extend with minor adaptations. 

Key Words: Boolean Like Rings (BLRs), Quadratic 
Boolean Modules 

1. On the Structure of Boolean like Rings (BLR for 
short):  

A commutative ring R with 1 is called a Boolean Like Ring 
([2]) (BLR) if it satisfies the following conditions: 

1. R has characteristic two 

2.  (     ) (     )                     

It turns out that 

   *       + 

is a subring, denoted by B or B(R), which consists of all 
idempotent elements of R. It is a Boolean ring, named as the 
Boolean subring of R. Let N or N(R) denote the ideal of all 
nilpotents elements of R. We have 

1.         for all nilpotent elements         
2.    *            + 
3.              * + 
4.        

Note that N is a B-module (in the normal sense of module 
theory). Alternatively, a BLR can be characterized as a zero- 
extension     of a Boolean ring by an arbitrary B-module 
N. The addition is clear. Concerning multiplication, we have: 

(     )(     )         (       ) 

where                : 

Throughout this paper we keep the notation: R for the BLR, 
B its subring of idempotent elements, N its ideal of nilpotent 
elements, elements of R are written as         , those of B 
as          and those of N as          The group of units 
of R will be denoted by   or  ( ), and elements of units will 
be represented by      . It is known that  

   *            +  *        + 

The multiplicative group   and the additive group   are 
isomorphic via the isomorphism                 
  with inverse                 

1.1.  Special elements in BLRs. 

For any given      the element a2 is idempotent. Hence, 
                         and a; a2; a3 is the list of 
all powers of a which actually occur. It may happen that not 
all of them are distinct. An element     is idempotent 

If     , it is called weakly idempotent if      , and it is 
called weakly nilpotent if      . Note that a is weakly 
idempotent and weakly nilpotent if and only of a is 
idempotent. Idempotents and units are samples of weakly 
idempotent elements, and idempotents and nilpotents are 
samples of weakly nilpotent elements. The weakly 
idempotent elements play a big role in the study of 
quadratic Boolean modules. In fact, one is dealing with 
finite sequences               subject to the conditions 

∑  
                  

 

   

 

Necessarily, each   is weakly idempotent. 

As stated in the last section every     has a unique 
decomposition of the type  

          where   is idempotent,   is nilpotent  

Using this fact, one proves 

Proposition 1.1: Let           where   is idempotent,   
is nilpotent. Then 

1.   is weakly idempotent iff       , 
2.   is weakly nilpotent iff        
3.   is weakly idempotent iff       for some 

idempotent  , unit   . It is      in this 
decomposition. 
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Furthermore, it turns out that   is weakly nilpotent if and 
only if     is weakly idempotent. The set of weakly 
idempotent elements (resp. weakly nilpotent elements) is 
closed under the two operations 

(   )       (   )              

Given an idempotent  , then       what implies that the 
nilpotent part   of R decomposes into the two 
eigenspaces     . We get 

    *        +    *       +         

Then      is a set of weakly nilpotent and     a set of 
weakly idempotent elements. If         then we get 
elements   such that all powers         are distinct. 

The next statement is fundamental for quadratic Boolean 
modules over BLR's. 

Proposition 1.2. ([4]) Given     , there is a unique 
decomposition of the type           where   is weakly 
idempotent, n is nilpotent and          In this 
decomposition we have            . 

1.2 Primary Ideals 

A BLR has Krull dimension zero, so every prime ideal is 
maximal. The maximal ideals of R, denoted by M, lie over the 
maximal ideals of B, denoted by m. Regarding the 
intersection of all maximal (=prime) ideals we obtain, 

        * + 

A commutative ring R is called primary if every zero divisor 
is nilpotent, an ideal I of R is called primary if the residue 
ring     is a primary ring. A primary ideal Q of the BLR R 
restricts, by intersecting with B, to a maximal ideal m of B. 
So,        The ideal        is a primary ideal of R since 

          

and the latter ring is primary due to the following 
statement. 

Proposition 1.3. The following statements are equivalent 
for a BLR R: 

1. R is a local ring, 
2.                  
3. R is a primary ring. 

Proof. The proof of ( )  ( ) uses the identity  (   )   
   for every idempotent e. To deduce (3) from (2) one uses 
the fact         under the given hypothesis. Finally, the 
remaining implication is shown by arguing that the radical 

√  is a prime, hence a maximal ideal. 

Moreover, one gets that an ideal I of R is primary iff it 
contains an ideal of the type   . Hence the ideals mR, 

where m ranges over the maximal ideals of B are exactly the 
minimal primary ideals of R. Additionally, the minimal 
primary ideals of R are pairwise coprime. 

Theorem 1.4.  

1. * +    , Q ranging over all primary ideals of R, 

2. R is a subdirect product of BLRs of the type     , i.e. of 
primary BLRs, 

3. if R has only finitely many idempotents, then R is a finite 
product of primary BLRs. 

Proof. The proof makes use of the fact that      is a  
primary BLR for each maximal ideal   of  . Once the first 
statement is proven the other two follows at once. To prove 
the first result, one has to show that      . Consider an 
element      in the intersection and pick a maximal ideal 
  of  . Then there is a presentation  

  ∑    
 

                                      

Now, using the identity 

           (          )(       ) 

one derives that        for some             . This 
implies that for each maximal ideal   we find    such that 
(    )   . We next consider the annihilator ideal  

  *         +  If       then            . Assume 

      Then I must be contained in some maximal ideal m 
of B. This implies (    )         , so again       
follows. 

2. Quadratic Boolean Modules 

2.1 Axioms and Examples. 

Let   be a BLR,   an abelian group, and a mapping  

       (   )     be given. Elements of   are 
denoted by       . This setting is called a Quadratic 
Boolean Module over R ([1]) if the following axioms are 
satisfied: 

1.   (     )            

2.  (  )    (  )  if either   is idempotent or both 
    are units 

3.        

4. (     )                      

Because of the first axiom (1), I have chosen the term 
"Quadratic". The last axiom is a typical Boolean condition; 
hence the term "Boolean" is introduced. For short, quadratic 
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Boolean modules over a BLR are referred to as Boolean 
modules. 

This set of axioms is consistent as shown by the subsequent 
examples. 

1. The case of Boolean rings: If   is a Boolean ring 
then any R-module in the normal sense of module 
theory, referred to as module hereafter, satisfies the 
axioms. As Foster has shown, a quadratic Boolean 
module over a Boolean ring is a module 
Iff the group   satisfies           for all       . 

2. The case of R-algebras: There are other samples 
of Boolean modules over an arbitrary BLR R. Let S 
be any R - algebra, not necessarily commutative, 
with unit 1, i.e. S is a ring with unit and a R - 
module satisfying  

  (  )   (  )     (  )                       

 In this situation, the set    is a subring of S contained in the 
center of  . Let's assume that               . Then, 
     , and, alternatively, we are dealing with a BLR R 
which is contained in the center of an extension ring   with 
unit where       . Yet, the original setting of R-algebras is 
more flexible in view of the following important examples: 

    , -  the group ring of a group G over R, or 
      ( )  the ring of     matrices over  . So far, it is 
known that the group ring is fundamental for the so-called 
group extensions of a group by a BLR. The case of the ring of 
matrices is yet to be explored. 

It is notable that, via those R-algebras, one can produce 
examples of Boolean modules without requiring the group V 
to be abelian. So, it seems feasible to extend the present 
study to the case of non-abelian Boolean modules. However, 
for the sake of simplicity, this study focuses on the abelian 
case apart from presenting a few samples in a more general 
setting. 

In the setting above, we take (   )    (    ),    the group 
of units of    The scalar multiplication          is 
denoted by the symbol   to avoid confusion with the 
multiplication in  . We denote (   )       as follows:  

                  

The proof that      is in fact a unit in   makes uses of the 
condition that    lies in the center of  , and (    )    
   what leads to the following statement: 

               (          ) (          )      

By direct calculations one verifies that          (   )  
   , constitute a model for the axioms for a Boolean 
module. Boolean modules of this type share special features: 

         *      +           

provided               . These two properties will be 
encountered in the next section again, in a quite natural 
manner. 

3. The case of E and N: We take       and obtain 
that   is a Boolean R-module under the scalar 
multiplication                  . In  
particular,          This shows that in this case,  
expressed in the additive notation,          
      . This is the first instance of a so called free  
Boolean module. 

As stated earlier, the group of units   is isomorphic to the 
additive group   via the mapping         . Transferring 
the Boolean module structure of   one obtains that   is a 
Boolean R-module under the scalar multiplication 

                       

3. Construction via Boolean modules over Boolean rings 

Given any Boolean module   over a BLR R we can restrict 
the scalar multiplication from R to the subring B of 
idempotent elements which is a Boolean ring. The topic 
dealt with in this section is the reconstruction of the R-
module V from the underlying B-module V . For the sake of 
simplicity, we restrict to abelian groups V. However, with 
little more care various statements can be extended to the 
non-abelian case. 

Lemma 3.1. 

1.   (     )                   for all 
                

2.           (  )                     

3.                     . 

Proposition 3.2.            (         )    (  
   )  for all       

Proof. The proof starts from the equation              , 
uses          to get              . The next input is 
the decomposition of   into a weakly idempotent and a 
nilpotent part: 

         (     ) 

Using axiom (4) one derives          (    ) . Apply 
axiom (4) and lemma   ( ) to          to get      
 (          ) , and the proof is complete. 

The ingredients of the decomposition above of ax have 
distinguished meanings: The term     refers to V as a 
Boolean B-module, the second term is of the type    since 
(       )     , and the third one is of the type    
since (    )     . 

Therefore, one has to study the mappings 
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         *             +  

Lemma 3.3.  

1.                      (   ) for all units     and 
all        , 

2.                    (     )  for all nilpotent 
elements    . 

The first statements in ( ) ( ) follow from                . 
The second statement in ( ) is a consequence of       ( ). 
Furthermore,         (    )       

    (       )         (  )        (  )  
          (  )    (  )(     )  

As consequence we get that the mappings     are group 
homorphisms. As shown above,   and   are Boolean R-
modules, hence Boolean B-modules: 

                       . It turns out that both 
mappings are even B-linear, i.e 

 (   )    ( )    (   )       ( ). 

It is the content of the next theorem that all three 
ingredients can be chosen arbitrarily, subject to the 
conditions obtained so far. The verification is 
straightforward. 

Theorem 3.4. A Boolean R-module is given by a Boolean 
           and 

arbitrarily chosen B-linear group homomorphisms  

                      by virtue of the formula 

            (          )      (    ) 

3.1 Modifications of Boolean Modules. 

            allows to modify the structure of a Boolean 
module by changing the mappings     and but preserving 
the B-module structure. If the mappings are changed then 
we get a new scalar product denoted by      . Keeping the 

B-module structure means            if   is an 
idempotent. In view of results to follow in the next section it 
is interesting to preserve also the products    if   is weakly 
idempotent, i.e.       . Looking at the formula 
              , this 

means we have to preserve the Boolean B-module structure 
and the mapping          . This observation leads to 
the notion of a nilpotent modification of a           
         . 

Definition 3.5. Let a Boolean R-module V be given, and 
         be any B-linear group homomorphism then the 
nilpotent modification of Boolean           _ is defined 
by the scalar multiplication 

          (    ) 

The nilpotent modifications of a given Boolean R-module 
preserve the scalar products    for weakly idempotent 
elements. Among them we find a distinguished one where 
       for each nilpotent element  . This one is obtained 
from a given one by choosing        This distinguished 
Boolean module deserves a special name: 

Definition 3.6. A Boolean R-module is called regular if 
       for every      . 

A Boolean R-module has a unique nilpotent modification 
which is regular. One concludes that a Boolean R-module is 
regular        for every      . Regular Boolean 
modules are characterized by the formula 

         (       )               . 

If V is regular and    weakly nilpotent then       . 

3.2 Normed Boolean B-modules. 

We consider a Boolean ring   and a Boolean           . 
A mapping            is called a Boolean norm if it 
satisfies the conditions 

1.                              
2.                           

In the following we will be referring to the order structure 
in Boolean rings and the annihilator ideal 

   ( )  *        + 

                 (    )                

   (    )       

That    ( ) is an ideal of B follows from the axioms 
( ) ( )  let              then 

 (      )    ,  (   ) -       (   )(  )   
  , so             ( ). 

Also,         ( ) for any     . In particular, 
        (     )(          )     ( ). We also get 
that the ideal    ( ) is closed under taking the supremum 

of finitely many elements. Furthermore, in Boolean rings 
principal ideals have a uniquely determined generator. 

Proposition 3.7. The following statements are equivalent: 

1. A norm exists, 
2.                    *        +       , 
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3.                    *        +        
4.               the annihilator ideal    ( ) is a 

principal ideal. 

If a norm exists, then it is unique and we have 

   ( )   (     )           *        +   

          *        + 

Proof. Here I present the proof for last statement the 
proposition. The reader can easily verify the rest. Assume 
that    ( )    (  ). Note that the generator 

is uniquely determined. Then set            . One gets 
that                 . Next consider       . Then 
             ( )    (  ) and we derive that 

   (        )               (  )  This means: 
               On the other hand          ( )  

hence             what yields 

(        )                     , 

Altogether 

                           (    )          

Conversely, let's assume that a norm exists. Then from 

  (     )     (            one gets that       
    ( ). Assume        then          which implies 
     (     )  So, it is proven that 

   ( )    (     )  

According to the last result, a norm exists whenever the 
Boolean ring has the strong property that each set which is 
closed under finite suprema has indeed a maximum. In 
particular, this applies to finite Boolean rings. In this case, I 
guess one should be able to interpret the norm via the 
decomposition of   into the eigenspaces attached to the 
multiplication by the finitely many idempotents in  . The 
arguments above can be applied to the special case of a 
      considered as module over its ring of idempotents  . 
It turns out that R as 

a           admits a norm if and only if N is a 
                . Note that the 

Boolean module structure on   coincides with the usual 
module structure as a         . So, one could study 
normed BLRs, for instance if B is finite. 
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