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Abstract— With recent development in deep learning, neural 
networks are becoming larger and larger in terms of number of 
layers, connection between neurons and number of parameter 
they consider. Facts such as growing volumes and varieties of 
input data, cheaper and more powerful computational resources, 
data storage, large-value predictions that can guide towards 
better decisions and smart actions in real time without human 
intervention are playing critical role in deep learning research. 
Machine learning helps to extract meaningful information from 
data if supported with massive computational resource. All these 
require models that can automatically analyze large complex data 
and deliver accurate results sometime in real-time scenario. 
Machine learning and in specific, deep learning plays an 
important role in developing these models. Developing and 
handling such complex and large models comes with few 
challenges such as 1) it is hard to distribute and fit large models 
on small portable devices. 2) Training large neural network is a 
time consuming process and may yield high error rate. 3) 
Consumes more energy due to larger model training and more 
memory references. 

 Various hardware platforms are available for various type of 
task of machine learning. Each has its advantages and suitability 
for specific kind of workload under specific environment. The 
data complexity and velocity determines how much processing is 
needed, while the environment typically determines the final 
latency and power requirement. In this paper, we discuss various 
types of machine learning workload and their properties along 
with various types of hardware. We also discuss how these 
resources satisfy different machine learning workload 
requirements. Understanding strength of each type of hardware 
component with respect to types of workload they handle would 
enable us to benchmark those hardware optimally.  

Keywords— Artificial intelligence (AI), application specific 
integrated circuit (ASIC), artificial neural network (ANN), central 
processing unit (CPU),computer architecture, field programmable 
gate array (FPGA), graphics processing unit (GPU), intelligence 
processing unit(IPU), machine learning (ML) 

I. INTRODUCTION  

It is the pattern of computation which has significant 
influence on design of any hardware. One such example is 
the growth of cloud computing domain, which catalyzed 
the development of new kind of hardware components[6]. 
Machine learning related computation has emerged as key 
workload and became major driving force for new kind of 
hardware design. With the advent of neural network 
related research work, minimum training time and higher 
inference throughput in neural networks processing came 

as a key challenge for hardware designers. This challenges 
and associated demands led to huge competition in the 
field of hardware manufacturing. Artificial Intelligence is 
the study of machines that can mimic human mind and its 
actions. Machine learning is constructing computer 
algorithms that automatically improve themselves by 
finding patterns in existing data without explicit 
instructions. 
 
 Machine learning largely depends on data. If algorithm fed 
with data which has more variety and quality more 
accurate the model becomes. Machine learning and 
artificial intelligence is progressing rapidly as scientists are 
building more and more complex AI software/hardware 
products. Notable machine learning technologies are 
Google's Tensorflow[42], AlphaGo[43], NVIDIA's 
DGX[44,45,46], Amazon's Alexa[47], Microsoft's Azure[48], 
IBM's Watson[49] and Intel's Nervana[50]. 
 
 Many machine learning algorithms have been used for 
years; the ability to automatically apply complex 
mathematical operations on data in faster way is a recent 
advancement. Notable ML applications that are very 
popular are IBM's Deep Blue[51], Google deep minds 
AlphaGo, online recommendation systems from flipkart 
and amazon, real time advertisements on mobile phones 
and web pages, web search results, digital personal 
assistant such as Alexa[55], cortana[55] etc. Other notable 
AI applications are on speech recognition, pattern 
classification, and computer vision. 

   
 

Fig.1. Landscape of Application of Machine Learning[13] 

 
 Google has become essential piece of our everyday lives. 
The millions of images uploaded to instagram, twitter, 
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facebook are sorted by image recognition techniques, which 
accurately classifies and give better search results. Image 
enhancement involves restoring and filling missing details 
of a pictures by extrapolation and other image processing 
techniques. Google's machine translation, speech 
recognition engine to understand spoken questions etc all 
are based on deep neural network. Recommendations 
system of Youtube, Netflix etc monitors and records users 
viewing habits and suggests videos accordingly.  

 While machine learning plays a important role in the 
advancement of technology today, there is lot of research 
work [13][52] going on which presents the opportunities 
and challenges in designing hardware to cater these 
domain requirement. These work study recent hardware 
platforms available for machine learning in the context of 
neural networks type computation. 

 Following section presents an overview of the neural 
networks and its requirements that contributed to 
increased demand for specialized hardware for Machine 
learning. 

• Advent of neural networks related research work. 

• Key factors affecting computation cost in machine 
learning.  

 • Dimension of the input data. 

a) Advent of Neural networks 
Traditional machine learning algorithm has fixed 

set of algorithm which is applied on huge set of data to 
discover patterns in them. In such computation the 
importance of computation and memory operations are 
balanced. However in deep neural network, it is mostly 
complex graph operations. At hardware level it culminate 
into larger dese matrix operations. Compute platform 
densely populated with many ALU are only suitable for 
such kind of workload.  

 
b) Key factors affecting computation cost in machine 

learning 
 As the need for increasing efficiency of neural networks is 
evolving, models are becoming larger, deeper and complex. 
For example in 2012, AlexNet [11] had only 8 layers but as 
of today ResNet is having 152 layers, even though both are 
used for same task for object recognition. Due to these 
factors back propagation algorithm takes a lot of time for 
computations to reach to global optima while ensuring 
minimal error. 
 
c) Dimension of the Input data 
 As the input dimensionality increases, there is lot of data, 
computation required to optimize the back propagation 
algorithm. For example, if we take n*n image we need to 
store n2 number of values in the first layer itself. As we go 
deeper, the number of values to be stored and to be 
computed increases exponentially. These factors insists to 
employ specialized hardware for machine learning.  
 
d) Training vs Inference 

 Workloads can be divided into two many stages or 
categories i.e. training (Model Building) and inference 
(Model use). Training starts with forward propagation 
calculation and results of forward propagation are 
compared against correct value to calculate the error. If 
error rate is high than actual result then backward 
propagation propagates the error back through network 
layers and updates their weights using gradient descent to 
improve the network’s performance at the task it is trying 
to learn. This can be done in batch mode with hundreds of 
training inputs (i.e., images for image classification 
network or spectrograms for speech recognition) and 
operate on them simultaneously during DNN training in 
order to prevent over fitting and more importantly 
amortize loading weights from GPU memory across many 
inputs, expanding computational effectiveness.  
 
 Inference is the process of using a trained machine 
learning algorithm to make a prediction on a new data. For 
inference performance goals are different. In the Inference 
phase a single data point is run through the model which 
was hyper parameterized in training phase. To minimize 
end to end response time during inference small batches 
are treated as input unlike training because services 
relying on it requires optimal responsiveness so that users 
don't have to wait several seconds while the system is 
accumulating images. Hence compute workload during 
training is higher than inference as well as throughput 
requirement. In contrast low latency is very important 
during inference workload. Based on this findings, we can 
adapt existing hardware architecture or we can develop 
new one. 

 
 

Fig.2. Training and Inference[38] 

II. TECHNOLOGY 

A. Hardware for Machine learning 

 Neural network hardware ranges from single core 
chips to high end neural processing systems. A variety of 
attributes have been used to classify NN hardware, such as 
system architecture, inter-processor communication 
networks, on-chip or off-chip learning, degrees of 
parallelism, general purpose or special purpose devices 
etc.[9]. Here we discuss various type of NN hardware 
candidate based on the factors like system architecture, on 
chip parallel processing, etc. NN systems are divided into 
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two categories. One is standard chips and the other is 
neural chips. Standard chips are further classified as multi-
processor and the sequential accelerators. 

 
1. Different Hardware Architectures 

 

In general machine learning hardware's can be 
classified as: 
 
• Central Processing Unit (CPU) 
• Field Programmable Gate Arrays (FPGA) 
• Graphic Processing Unit (GPU) 
• Application Specific Integrated Circuit (ASIC) 
 

 
 

Fig.3. Hardware Platforms for Machine Learning[41] 
 

a) Central Processing Unit 

Central processing unit is the integral part of 
performing computations on a computer. In CPU 
components include Arithmetic Logic Unit (ALU), Central 
Unit (CU), and Memory Unit (MU). ALU is generally used to 
perform arithmetic operations. CU process the control 
signals arriving through control bus etc.. Memory Unit 
includes RAM, ROM, Cache memory. When ALU requests 
for data, CU manages and satisfy such requests by initiating 
memory operation such as loading the values from 
registers, retrieving the values from the cache memory 
unit etc.[12]. General purpose CPUs is highly 
programmable architecture but has low energy efficiency 
with low computational throughput compared to other 
architectures. General purpose CPU with accelerators can 
be customized to a dedicated ML task but computational 
throughput depends on attached accelerators. 

 
 

Fig.4. Central processing Unit 

b) Graphics Processing Unit 

Now a day, GPUs are most preferred and widely 
used in ML and DL training. GPUs are designed for 
performing massive parallel tasks supported by thousands 
of tiny compute cores and high memory bandwidth. In 
general, machine learning algorithm involves large number 
of matrix multiplications and additions. GPU's are 
generally used for graphics processing which also involved 
massive matrix operations.. Naturally GPUs performs 
really well with deep learning algorithms  
 

c) CPUs Vs GPUs 

 While GPUs are good for training it has lacks efficiency for 
inference operation because of its host to device 
bandwidth issue.  

CPU contains large cache memory but fewer cores. 
Each core is capable of serving hundreds of software 
threads per instant. In contrast GPU contains thousand of 
core and together they can handle millions of threads. CPU 
focuses of low latency whereas GPU focus to achieve high 
throughput. CPUs feature control logic for out of order 
execution and speculative execution whereas GPUs contain 
architecture which is tolerant to memory latency. In 
general CPUs consumes more power than GPUs. CPUs are 
optimized to be good at executing serial but complex 
instructions whereas GPUs are good at processing 
embarrassingly parallel instructions[8]. 

 

 
Fig.5. CPU vs. GPU 
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 CPUs and GPUs are different in terms of structure they are 
built upon. CPUs architecture is designed to be narrow and 
deep, whereas GPUs are designed to be shallow and wide. 
This design implementation gives GPUs to execute on 
thousands of compute cores in parallel.  
 
1. A GPUs compute core (compute unit) is designed to be 
simpler than modern CPUs core. 
 
2. CPU cores can handle branch prediction whereas GPUs 
cores are bad at branch prediction. 
 
3. GPU is a SIMD compute engine where during execution, 
instruction set is same for all cores but they will be 
operating on different data. 
  
4. CPU cores are equipped with large cache memory and 
each core operates at a higher clock speed. 
 

d) Field Programmable Gate Arrays 

Hardware description language (HDL) is used to 
program FPGA hardware. FPGAs contain programmable 
logic system that can be used to reprogram according to 
functionality. Even though FPGA performance in terms 
floating point operations is less than GPUs. But FPGAs is 
better with respect to energy consumption. Few examples 
of FPGA based machines are Stratix IV (Altera), Spartan 
(Xilinx) etc. 

 
 FPGAs re-configurability allows adaption to evolving 
neural network architectures/frameworks. We can 
implement custom neural network architecture using 
FPGA. It also has hardware acceleration for specific 
operations on-chip (MAC) and on-chip memory (SRAM) 
available. TTM (time to market) is less restrictive than for 
ASICs as the firmware can be altered. But it is not 
appropriate for low power applications. It has limited on-
FPGA memory (SRAM) and limited data rate to external 
memory (DDR). 
 
 A large number of logic gates and RAM blocks are used to 
build fundamental blocks of FPGA. In FPGA architecture to 
increase the number of floating-point execution operations 
work is being done. Artificial neural network execution on 
FPGAs tries to exploit the functionality of reprogramming 
ability. 
 
 FPGAs provide the analog features into the processing. In 
FPGAs, it is possible to achieve low latency compared to 
CPUs. FPGAs can cater to higher input-output connectivity 
which gives higher bandwidth. The cost of building FPGAs 
is much higher compared to general MIPS (million 
instruction per second) based architectures. FPGAs are 
designed to be a reconfigurable circuit. Design of 
instruction based architecture is done via software, but 
FPGAs are configured using a hardware circuit. 
 

  
Fig.6. FPGA 

 
 Architecture wise, FPGA architecture includes 
configurable logic block, I/O block, and switching matrix 
interconnect. In configurable logic block(CLB), it contains 
logical cells or slice, full adder and multiplexer(MUX) logic, 
D flip-flop, 4 input look-up table. In FPGAs [1], authors 
include digital clock manager, block RAM, and multiplier 
logic block. Digital clock manager is used for frequency 
generation, phase shifting, etc. Multiplier block is used for 
multiplication operation on an 18-bit multiplier. Block 
RAM includes a dedicated memory dual memory (16kb). 
 

e) Application specific Integrated circuit 

Design of specific architectures, which focuses on 
a particular field or area. For example ASIC are designed in 
area like Bitcoin mining, Machine learning etc. Flexibility in 
ASIC is very less compared to CPUs, GPUs and FPGAs. 
ASICs are further classified into: 
 
• Full-custom ASICs  
• Semi-custom ASICs  
• Platform ASICs 
 
 Full custom ASICs are designed for specific applications 
only. They cannot be used for further modification in 
hardware. Whereas semi-custom ASICs are customized to 
allow modification in terms of few functions. Platform 
ASICs are designed based on silicon consists of a group of 
slices which decreases design duration(cycle) and 
improves the cost utilization factor. The slice is a pre-
manufactured device that is used to implement a custom 
system- on-chip. 
 
 ASICs have low power and highest performance for 
targeted applications. Chip architecture maybe invariable 
to adapt to fast development of Deep Learning 
topologies/frameworks. In most cases restricted to 
inference only. In manufacturing point of view, it requires 
high cost for development and production also along with 
large market volume to justify development costs 
considering slow time to market. 
 
 Recent notable development from Google using ASICs is of 
Tensor Processing Unit (TPUs). TPU can use for both 
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training and inference. Also Intel designed Nervana chip, 
which are used for deep learning inference ASICs [9]. 
 

f) IPU(Intelligence Processing Unit) 

The Graphcore has built new type of processor for 
accelerating machine learning and AI applications. 
Graphcore systems are good at both training and inference. 
It is specifically designed for machine intelligence 
workloads. It has been developed to work effectively on 
the extremely complex high dimensional models that are 
required for machine intelligence workloads. It focuses on 
massively parallel, low precision, floating point 
computation while providing much higher compute 
density than other solutions. It holds machine learning 
model inside the processor. 
 

g) General Purpose Processors 

i. Digital Signal Processor 
 A digital signal processor is used mainly for 

performing addition, subtraction, multiply, divide very 
quickly. But it has similar bottleneck as CPUs due to von 
Neumann architecture. It has higher performance than 
CPUs but lower than GPUs. 
 

ii. Systolic Arrays 
 It is based on dataflow architectures based on a network 
of tightly-coupled homogeneous processing elements. 
Computations are performed in a pipelined manner by 
passing data through the systolic array [53]. 
 

 
 

 
 

Fig.7. Systolic Arrays 
 

iii. SIMD Processor Arrays, VLIW and Vector or 
SIMD Co-processor 

 It contains the multiple processing elements e.g. 
MAC Units which performs same operation on different 
pieces of distributed data simultaneously .i.e. data level 
parallelism. In VLIW various different instructions 
performed in parallel i.e. instruction level parallelism. 
 

h) Neuromorphic Chips 

Neuromorphic computing is inspired by design of 
human brain like architecture – like human brain contains 
billions of neurons linked with synapse. In traditional 
processor design, compute core is at different place, 
storage at different place, memory unit at different place. 
This design is inspired by Von Neumann architecture and 
has issue such as data transfer bottleneck. But in 
Neuromorphic chips scientists have merged all this in only 
one chip for processing and storage also. At device level 
Von Neumann architecture contains registers, capacitors, 
inductors, transistors etc. These components are energy 
hungry time consuming, having rigid design with limited 
inter-connectivity.. In contrast Neuromorphic computing 
contains high speed neurons, low power consumption, 
fault tolerant, no need to be programmed. 

 
Examples are DARPA Synapse program (Systems 

of Neuromorphic adaptive Plastic scalable electronics), 
IBM TrueNorth, Stanford Neurogrid, SpiNNaker(Spiking 
Neural Network Architecture), HRL Neuromorphic chip 
etc. 
 

  
 

Fig.8. Neuromorphic Chips 
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i) Advanced Technologies - ReRAM and eDRAM and 
In-memory Computing 

ReRAM-based main memory design, PRIME, which 
substantially improves the performance and energy 
efficiency for neural network (NN) applications, benefiting 
from both the PIM(processing in memory) architecture 
and the efficiency of ReRAM-based NN computation. In 
PRIME, parts of the ReRAM memory arrays are enabled 
with NN computation capability. They can either perform 
computation to accelerate NN applications or serve as 
memory to provide a larger working memory space [17]. 
Embedded DRAM (eDRAM) is explored in to reduce the 
energy cost in memory access of the weights in DNN [19]. 

B. Case study-Tensor Processing Unit (TPU) 

 Tensor processing unit is cutting edge custom designed 
ASIC, optimized to run machine learning algorithms. In 
training neural networks, TPUs proved to be efficient 
compared to CPUs, GPUs and FPGAs. In 2006, FPGAs, GPU 
were understood to be sufficient enough to satisfy the 
demand. But after the reemergence of neural networks, the 
demand for hardware with mega compute capacity is on 
rise.. In 2016, Google introduced TPU[10], integrated into 
their data centers and reported the metrics of 
improvement about performance and cost. Below is the 
detail of different generation of TPU.  
 
• 1st generation TPU  
• 2nd generation TPU  
• 3rd generation TPU 
• Edge TPU (IoT applications) 
 

1) 1st Generation TPU 
 TPUs First generation included an 8 bit 

multiplication design. It included CISC instruction set. First 
generation of TPU is constrained with limited memory 
bandwidth along with only integer operation. . Whereas 
second generation TPU were capable with floating point 
operations. From neural networks perspective, 1st 
generation TPU performed well on inference work but not 
during training phase [2]. 

 
 Architecture wise TPUs include 28nm process and die size 
of 331 mm2. Its memory includes 28MiB chip memory, 
256 256 systolic array containing 8 bit multipliers. TPU 
contains 8MB dual channel with DDR3 SDRAM having 
almost 34GB/s of bandwidth. It is operating over 2133 
MHz and having 4MB of 32 bit accumulators along with 
PCIe 3.0 bus. 

 
2) 2nd Generation TPU 

 In 2017, Google launched second generation of TPU with 
vast improvements in terms of memory bandwidth. 2nd 
generation TPU having bandwidth as 600 Giga Bytes per 
second with compute performance up to 45 Tera Flops.. 
Google has also parallelized TPUs into TPU pod. Each TPU 
pod include 64 TPUs to provide parallel execution. Parallel 
execution on TPU pod require no additional software 

modifications, they are done at hardware level itself. 2nd 
generation TPU allows floating point operations. And can 
be used for both training and inference workload of ML/DL 
domain. 
 

 

 
Fig.9. An overview of TPU v2 and TPU v3 chips 

 
3) 3rd Generation TPU 
 In 2018, Google launched 3rd generation TPU which is 

twice as powerful as second generation TPU. In 3rd 
generation, TPU-pod demonstrate almost 8 times better 
throughput compared to 2nd generation TPU. 3rd 
generation TPU offers up to 420 Tera Flops compute 
performance along with 128 GB high memory bandwidth. 
TPU pod based on 3rd generation TPU can deliver up to 
100 peta ops, along with 32 TB memory bandwidth 
through 2D toroidal(torus) mesh network. 

 

a) TPU Architecture 

  
TPUs (Tensor Processing Units) are designed to provide 
maximum performance with respect to execution of 
machine learning models . TPUs internally use idea of 
tensors. A tensor is formed by generalized vectors and 
matrices as mentioned below. In a nutshell TPUs use 
tensors to optimize ML-based algorithms. 
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Fig.10. Tensors 

 
 3rd generation TPU, it includes 4 TPU chips. Internally 
each chip includes: 

 2 cores per chip. 
 22.5 Tera ops per core. Scalar unit, Vector unit 
 4 chips contribute 180 Tera ops. 

 

 
Fig.11. TPU chip layout 

 
 Each matrix unit includes 128*128 systolic arrays [7]. 
Google introduced new floating point format referred as 
bfloat16 even though it also uses float32 accumulator. In 
float32 it has 8 exponent bits in bfloat16 it also has 8 
exponent bits whereas in float16 it has 5 exponent bits. [5]. 
Details about bfloat16 are referred below: 

 
Fig.12. TPU - bfloat16 format 

 
 IEEE standard float32 (single precision) and bfloat16 have 
same range since they have equal number of exponent bits. 
In matrix unit, 128*128 systolic array is used to perform 
matrix computations very fast by using intermediate 
results in parallel. 

 

b) TPU Benchmarks 

 For benchmarking TPU, authors considered ImageNet 
dataset. ImageNet data[**] includes 14 million images, 
which are annotated into 1000 classes depending on the 
object present in the image. ResNet-50, inception V3 are 
various models used for the ImageNet challenge. 
 
 

 
 

Fig.13. TPU vs. NVIDIA Tesla v100 GPU 
 

 We can observe TPU performs well compared to GPU in 
terms of training time. Now check cost of training the 
model in case of ImageNet challenge. DAWN Bench, 
measures different models with respect to training cost, 
accuracy and training time. Below are the results from 
DAWN bench based on TPU.  
 
AmoebaNet-D on cloud TPU: 

 Final accuracy - 93% 
 Training time - 7.5 Hrs.  
 Training cost - $49.3 

 
ResNet-50 on TPU: 

 Final accuracy - 93%  
 Training time - 8.9 Hrs.  
 Training cost - $59 

 

c) Edge TPU 

 In 2018, Google launched Edge TPU, ASIC designed 
for inference and training of neural networks on edge 
computing. Especially in the field of Internet of Things, 
Edge TPU can be used to perform inference using 
Tensorflow Lite. Edge TPU was targeted to perform well 
under small physical environment with minimum energy 
footprint. 
  

C. Precision and Number Format 

 For designing neural network hardware significant 
considerations should be considered. Firstly, balance 
between precision i.e. number of bits and cost of memory 
area. Secondly suitable number format(FP32, FP16, and 
INT8) should be chosen so that dynamic range is large 
enough for general purpose applications. In most cases 
precision is limited to 16-bits for neural network and 8-
bits fixed points for outputs. If we use 16-bits precision 
instead of 32-bit precision it shows faster computations, 
since processors will in general have more throughput at 
lower resolution. If model is trained by using lower 
precision it also increases bandwidth because small 
amount of data is fetched at each computation. For RNN it 
may be required more that 16-bit precision. However 
precision cannot reduced too much because the network 
will not train and will not give accuracy as needed. 
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Precision is needed for training phase it is important to 
keep precision as high as possible. But, propagation phase 
requires low precision. 

 
 According to researchers it is possible to train neural 
network by integer weights because integer multiplication 
can be implemented more effectively than floating points. 
There are some algorithms which uses power-of-two 
integers strategy [56] because multiplications in neural 
network can be reduced to series of shift operations. 
Floating point gives maximum dynamic range so it is 
suitable for any application[21]. But floating point requires 
more cycles for computation than integer. So most 
Neurocomputers consider fixed-point representation 
where only integers are used and position after decimal 
point is handled by other hardware or software. Another 
method for representation bit stream arithmetic is also 
used[57]. 
 
 Neural networks improves accuracy but also increase 
number of parameters and model size. This increases 
memory demands and computing bandwidth. The new 
techniques for efficient neural networks are developed like 
compact low precision data types which is less than 32-
bits. Furthermore, researchers also used extremely low-
precision two-bit ternary neural network where values are 
(+1,0,-1) and one-bit binary neural network where values 
are (+1,-1) 

 

D. Optimization Techniques 

 Researchers are modifying the ML algorithms to making it 
more hardware-friendly while maintaining accuracy. The 
main focus lies on reducing computation, data movement 
and storage requirements [9]. The optimization techniques 
are as follows: 
 

1) Precision Reduction 

 The default size for programmable platforms such as CPUs 
and GPUs is often 32 bit or 64 bits with floating point 
representation during training but using inference it is 
possible to use fixed point representation and significantly 
reduce the bit-width to save energy and reduce space 
requirement while ensuring optimal throughput. 

2) Pruning 
 Machine learning models require large amount of 
computing, storage, power which is bottleneck to run 
models on edge devices like mobile devices and browsers 
with limited computational resources. So pruning is used 
for inference to efficiently produce machine learning 
models in smaller size, more effective, more faster and 
power efficient way. If every neuron in the layer below has 
a connection to the layer above this signify the presence of 
dense floating point multiplication operation requirement . 
But sparse models are easier to compress, and skip zeroes 
during inference for latency improvements.  
 

 Finding the rank of neuron how much they utilized, we can 
then expel low ranking neurons from the network 
resulting in smaller and faster model. After the pruning, 
the accuracy or precision will drop and the network is 
normally pruned-trained-pruned iteratively to recover. If 
lot of pruning is done at once then network might damaged 
so it won't be able to recover. Weight pruning and unit or 
neuron pruning are methods of pruning. 
 

3) Deep Compression  

 Neural networks are both computationally intensive so it 
is hard to deploy on edge devices with less hardware 
resources. So deep compression is used to reduce storage 
and energy required to run inference on large neural 
networks to deploy on mobile devices. AlexNet and VGG-16 
uses large number of parameters which is of 200MB-
800MB.Deep compression contains three strategies-
pruning, weight sharing, Huffman coding for compressing 
huge weight matrix. First, the model is fully trained. Then 
neural network is pruned by removing weights less than 
threshold. Then the remaining weights are quantized by 
calculating centroids by some clustering algorithm. Then 
Weights are approximated to nearest centroids of cluster, 
by using weight sharing. After quantization only the 
centroids and the cluster index matrix maps weights to 
centroids. Lastly, all indices are compressed using Huffman 
coding. On ImageNet, the approach reduced the storage 
required by AlexNet by 35 times (from 240 MB to 6.9 MB) 
without losing accuracy. Several experiments were 
conducted for this. Researchers first calculated the 
prediction accuracy of AlexNet and VGG-6 [39] before and 
after compression. They were able to compress model by 
35x and 49x with no reduction in accuracy. Pruning and 
quantization work well and give better compression. 

 After analysis on the compression rates, authors 
conducted experiments on speedup and energy 
consumption. Network shows different computation on 
batching and non-batching inference. Computation of 
batched inference is control by matrix-matrix 
multiplication whereas non-batched is controlled by 
matrix-vector multiplication. Ratio of memory access to 
computation is higher in Matrix-vector multiplication that 
is reducing memory access gives better speedup(3-4x). 
Matrix-matrix multiplication take advantage of cache 
locality efficiently. That is for batched inference deep 
compression performs worse than uncompressed ones and 
similar for energy consumption as well. 

4) Data Quantization 

 One way to reduce machine learning computation 
demands and increase power efficiency is through 
quantization. Quantization is a simple term which contains 
multiple strategies to convert large set of input values to 
smaller set of output values. In general quantization gives 
number of bits to represent information. Quantization is 
the process of approximation of deep neural network that 
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uses floating point numbers by a neural network of fixed 
point numbers or low bit width numbers. 

 Neural network consists of activation nodes, the 
connection between each node, and its associated weights 
for each connection. Running neural network on hardware 
can easily result in many millions of multiplication and 
addition operations. So lower bit numerical operations 
with quantized parameters merged with quantizing 
transitional calculations of a neural network results in 
large computational gains and higher performance. 

 In addition to the performance, quantized neural network 
increases power efficiency by reducing memory access 
cost and increasing computing efficiency. If we use lower 
bit quantized information it requires fewer data 
movement, both on-chip or off-chip, which reduces 
memory bandwidth and saves energy. Lower precision 
operations such as an 8-bit integer multiplication vs. 32-bit 
floating point multiplication, consumes minimum energy 
and increases computing efficiency by reducing power 
consumption. Also reduces number of bits for representing 
the models parameters results in less memory. 

 The outputs (based on an analysis of various strategies 
with different neural network architectures) shows this 
[40] dynamic-precision quantization is much more good 
compared with static-precision quantization. With the help 
of dynamic-precision quantization, they may utilize 
considerably shorter representations of operations while 
yet accomplishing equivalent accuracy. 

 
5) Low Rank Optimization and Trained Ternary 

Quantization  
 

 The issue with Convolutional neural systems is their costly 
test time assessment which leads the models unrealistic 
into the real world systems. For instance, a cloud 
administration needs to process huge number of new 
submission of requests per second; edge devices for 
example mobile phones and tablets generally have CPUs or 
low-end GPUs only; some image recognition functions like 
object detection are still time-consuming for the 
processing a particular image, even on a high-end GPUs. 
For this problems, it’s of practical significance to speed up 
the test-time computation of CNNs. 
 
 On the basis of minimizing the reconstruction error of 
non-linear responses, subject to a low-rank constraint that 
can be utilize to reduce computation. For solving the 
challenging constrained optimization problem, the 
researchers decomposed it into two possible subproblems 
and solved in iterative manner. Then they suggest to 
minimize an asymmetric reconstruction error, which 
efficiently reduced the accumulated error of multiple 
approximated layers. 
 

 One more algorithm that can resolve the deployment 
problems of large deep neural network models on edge 
devices with low power budgets is trained ternary 
quantization, which can reduce the precision of weights in 
neural networks to ternary values. Firstly, train a model or 
take a trained model. Then copy full precision weights that 
you want to quantize, replace them by ternary values(-
1,0,+1) using some heuristics. Then repeat until 
convergence. Trained ternary quantization has very less 
accuracy degradation and may even increase the accuracy 
of a few models on CIFAR-10 dataset and AlexNet on 
ImageNet[40] dataset. In this paper, an AlexNet network is 
trained from basic, which means it’s as simple as training a 
ordinary, full-precision model. 

E. Spiking Neural Network  

 It is possible to build a computer by using organic and 
synthetic neurons and synapses. Programmers can use 
organic Neuromorphic neurons and synapses to model 
artificial neurons and networks. Now a days it is possible 
to use Neuromorphic spiking neural network systems 
which have the potential to calculate complex tasks more 
efficiently. Spiking neural nets implement ML algorithms. 
Currently, GANs can be solved using spiking neural nets. 
Their deep neural nets consists of two nets - generator and 
discriminator. One CNN generates the new data instances. 
They calculate the probability given feature x and label Y 
by random noise. Discriminative algorithm calculate the 
probability of Y given X .There is an electrical potential 
difference between interior and exterior of the cell . This is 
called membrane potential of the cell. Changes in the 
potential membrane of the cell is used to code and 
transmit when it reaches particular value. This activates 
specific neuron. Spike latency designates that the 
activation effect occurs after a delay time. Organic or 
synthetic neural networks are stochastic. The activation 
function is ReLU. Spiking neurons has two properties. First, 
the neuron value is membrane potential. Second, each 
neuron outputs binary spike. Spiking neural networks have 
potential to calculate complex tasks more efficiently. SNNs 
on Neuromorphic hardware shows properties like less 
power utilization, fast inference, and efficient data 
processing. This helps for efficient implementation of 
neural network. 
 
 Brain-inspired processors aim at achieving nearer the 
storage and the computational components to effectively 
assess deep learning algorithms. Now a days, SNN, a 
formation of cognitive methods uses computational 
primitives mimicking neuron and synapse working 
principles, has become an essential component of deep 
learning. SNN are expected to improve the computational 
performance and efficiency of neural networks, but SNN 
are best suited for hardware able to support their temporal 
dynamics [34]. 
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CONCLUSION 

 
Hardware platforms for deep neural network is essential 
for taking advantage of parallelism along with specially 
designed, efficient software libraries. While designing 
hardware for machine learning, important consideration 
should be made for the choice of precision, number format 
and type of neurocomputer. Neural network hardware is 
also designed using CPUs, GPUs, FPGAs and ASICs 
depending on the performance requirement. The hardware 
built using these technologies may have structural and 
behavioral differences and hence optimization and careful 
design is necessary. More extensive technologies such as 
eDRAM and ReRAM are being used for speed-up and to 
overcome conventional design problems. As AI 
applications are becoming larger and complex, demand for 
ML specific devices will increase with time. 
  
 As Google claims [3], TPUs advanced the Moore’s law 
prediction by almost 7 years. Recent improvements in 
ASICs, produced better results with respect to training time 
and training cost. As of today, we can train ImageNet data in 
18 minutes [4], which is not feasible five years ago, since 
ImageNet has almost 14 million images. As discussed, 
specialized hardware for Machine learning is of primary 
focus, since the demand for deep neural networks is 
increasing rapidly. ASICs though have concerns like they 
are optimized to do one particular task. In case of ImageNet, 
Google’s TPU stood first using only 12.6$ (Next highest is 
27$) on ImageNet data with some compromise on accuracy. 
 
 In case of Neural networks, since it involves lot of matrix 
multiplications specialized hardware manufacturers are 
focusing on parallelizing the ALU operations to improve 
performance. In last 10 years, growth of deep Neural 
networks posed challenges and opportunities to the 
computer architects. 
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