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Abstract: Data is the new oil in current technological society. The impact of efficient data has changed benchmarks of 
performance in terms of speed and accuracy. The enhancement is visualizable because the processing of data is performed 
by two buzzwords in industry called Computer Vision (CV) and Artificial Intelligence (AI). Two technologies have 
empowered major tasks such as object detection and tracking for traffic vigilance systems. As the features in image 
increases demand for efficient algorithm to excavate hidden features increases. Convolution Neural Network (CNN) model 
is designed for urban vehicle dataset for single object detection and YOLOv3 for multiple object detection on KITTI and 
COCO dataset. Model performance is analyzed, evaluated and tabulated using performance metrics such as True Positive 
(TP), True Negative (TN), False Positive (FP), False Negative (FN), Accuracy, Precision, confusion matrix and mean 
Average Precession (mAP). Objects are tracked across the frames using YOLOv3 and Simple Online Real Time Tracking 
(SORT) on traffic surveillance video. This paper upholds the uniqueness of the state of the art networks like DarkNet. The 
efficient detection and tracking on urban vehicle dataset is witnessed. The algorithms give real-time, accurate, precise 
identifications suitable for real time traffic applications. 

We build a real-time multiple object tracker (MOT) for autonomous navigation using deep convolutional neural networks. 
To achieve this, we combine state-of-the-art object detection framework, Faster R-CNN architecture. We freeze the 
pretrained weights for the detection network and train the tracking network on the MOT dataset. We show that such end-
to-end modular approach for MOT performance is at par with the available computer vision techniques. We also use our 
model on real-world scenarios to show the generality of our model. 

1. Introduction 

Over the past years domains like image analysis and video analysis has gained a wide scope of applications. CV and AI are 
two main technologies dominating technical society. Technologies try to depict the biology of human. Human vision is the 
sense through which a perception of outer 3D world is perceived. Human Intelligence is trained over years to distinguish 
and process scene captured by eyes. These intuitions acts as a crux to budding new technologies. Rich resource is now 
accelerating researchers to excavate more details form the images. These developments are due to state of the-art 
methods like CNN. Applications from Google, Facebook, Microsoft, and Snap chat are all results of tremendous 
improvement in Computer vision and Deep learning. During time, the vision-based technology has transformed from just a 
sensing modality to intelligent computing systems which can understand the real world. Computer vision applications like 
vehicle navigation, surveillance and autonomous robot navigation find Object detection and tracking as important 
challenges. For tracking vehicles and other real word objects, video surveillance is a dynamic environment. In this paper, 
efficient algorithm is designed for object detection and tracking for video Surveillance in complex environment. Object 
detection and tracking goes hand in hand for computer vision applications. Object detection is identifying object or 
locating the instance of interest in-group of suspected frames. Object tracking is identifying trajectory or path; object takes 
in the concurrent frames. Image obtained from dataset is, collection of frames. Basic block diagram of object detection and 
tracking. Data set is divided into two parts. 80 % of images in dataset are used for training and 20 % for testing. Image is 
considered to find objects in it by using algorithms CNN and YOLOv3. A bounding box is formed across object with 
Intersection over union (IoU) > 0.5. Detected bounding box is sent as references for neural networks aiding them to 
perform Tracking. Bounded box is tracked in concurrent frames using Multi Object Tracking (MOT). Importance of this 
research work is used to estimate traffic density in traffic junctions, in autonomous vehicles to detect various kinds of 
objects with varying illumination, smart city development and intelligent transport systems [18]. 

2. Review of Literature 

2.1 Object Detection 

Despite its long history of development since 90’s [29, 35], object detection has experienced major breakthrough since 
2012 after AlexNet [24] was pop-ularized. Several pivotal works, such as Overfeat [30], SPPNet [18], Fast R-CNN [15], 
more recently Faster R-CNN [28] and Single Shot Detector (SSD) [26] have advanced the object detection approaches in 
terms of both speed and accuracy. In the following sections, the latter two works are in-troduced due to the fact that their 
designs well preserve the advantages but also compensate the shortcomings of the previous object detectors. 
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2.1.1 Faster R-CNN 

Faster R-CNN is an object detector comprising of an object proposal gener-ator and a detection network serving as 
classifiers classifying the generated object proposals as shown in Figure 2.1. Unlike Fast R-CNN [15] relying on an external 
object proposal generator, e.g. Selective Search [34], Faster R-CNN introduces Region Proposal Network (RPN) which 
learns to generate the object proposals during the network training phase. The major contribu-tion of this architecture is 
that it shares the convolutional features not only among the object proposals (as Fast R-CNN does) but also among the 
object proposals and detection networks, contributing to less wasted computation and faster inference and, in addition, 
higher mean Average Precision (mAP) than Fast R-CNN on PASCAL VOC 2007 and 2012 benchmark datasets. In Section 
2.1.1.1 and 2.1.1.2 we introduce the RPN architecture and the loss functions deviced to train RPN, respectively. 

 

Fig 2.1 Faster R-CNN Network Structure 

2.2 Online Single Object Tracking 

On-line single object tracking addresses the problem in which given the cur-rent frame and the initial state of an object, 
the tracker predicts the object’s state in the next frame. The object’s state in the context of this thesis project is the 
bounding box that well wraps around the object. Tracking-by-detection is an approach that started gaining its popularity 
since 2006. The works that applauds tracking-by-detection methodology include on-line boosting trackers [5, 16, 17], 
tracking-learning-detection (TLD) tracker [22], and later on the correlation filtering tracker, such as MOSSE tracker [9], 
DSST [12], kernelized correlation filtering tracker (KCF) [19], etc. 

 Due to their computational efficiency and effectiveness on modeling an object’s appearance, correlation filtering based 
trackers have become the state-of-the-art where their results are always ranked top on different benchmark datasets. 
Hence, in the later sections, we introduce Minimum Output Sum of Squared Error (MOSSE) tracker, which is one of the 
very first approaches that apply correlation filters for the tracking problem, and Discriminative Scale Space Tracker 
(DSST), which had won the Multiple Object Tracking’14 Challenge and still is able to operate in real-time on CPU. 

2.3 Online Multiple Object Tracker 

A multiple object tracker (MOT) typically has to handle a number of difficulties. Firstly, the identity switches, i.e. the 
situation in which the tracker mistakes another target for the one it is supposed to track, may happen due to the presence 
of other objects similar in their appearances. This situation happens frequently when the test videos are taken from the 
street view and other public spaces where the pedestrians wearing clothes with similar colors and styles and/or are highly 
occluded by each other. Secondly, because of the constraint of online methodology which cannot peek into future frames, 
the tracklet, i.e. the tracking trajectory on the same target, may be fragmented due to some tracking errors such as identity 
switches. Thirdly, if an object has been occluded for quite some time and re-appears, the tracker should be able to 
recognize and start tracking it again. To address these difficulties, Nicolai Wojke et al. [36] proposed an online multiple 
object tracking framework which incorporates an object detector, Kalman filter as the base tracker, and a data association 
method which is based on the features learned from a deep neural net to associate the results from detectors and trackers.  

Many approaches like feature extraction based on color and gradients fail to give spatial positioning in the image. The 
challenges are overcome by employing Analysis of principal components by PCANet [4] pipeline of image undistortion, 
image registration, classification and detections based on coordinates and velocities. Approach uses detectors like FAST, 
FREAK descriptors and followed by classification of Squeeze Net [5]. The workflow of candidate target generation, 
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extracting features from candidate targets, the ground truth boxes around objects assist in tracking. The objects are 
classified using VGGNet [6]. CNN was designed to classify images, was repurposed to perform the object detection. The 
approach treats object detection as a relapse for object class to bounding objects detected. Series of gradual improvements 
has been witnessed from RCNN, Fast RCNN and faster RCNN then finally to YOLO. Instead of assessing image repetitively 
as in CNN, image is scanned once for all, thereby increasing the processing of frames per second (fps). YOLO is trained 
based on loss occurred unlike the traditional Classification approach [7]. Paper describes about video analytics part for 
road traffic. One of main application area apart from vehicle detection and tracking is vehicle counting. One of the novel 
algorithm called Single Shot Detector (SSD) is employed. Algorithm handles features like Binary large objects. It gives 
better results in applications like classification of objects. Object tracking employs concepts like background subtraction 
and virtual coil method. In terms of precision SSD outperforms YOLO versions. Swiftness and precision are always 
tradeoffs while selecting the right algorithm for object detection with the speed of 58fps performance metric for accuracy 
exceeds 85% [8], paper explains about upgradation to YOLO was made in the paper. Gradual updating has been witnessed 
throughout series of YOLO versions namely YOLOv1, YOLOv2, YOLOv3. YOLOv3 is state of the art technology. Upgradation 
such as thinner bounding boxes without affecting adjacent pixels. YOLOv3’s implementation on COCO dataset shows mAP 
as good as SSD. YOLOv3 gives three times faster results. YOLOv3 promises in detecting smaller objects [9]. With increase 
in vehicle density in urban region, Single object tracking will no longer cater for the need. Multi object tracking is achieved 
by employing kernelized correlation filter (KCF). Many KCF are run in parallel. KCF is best suited when images have 
occlusions. KCF when combined with background subtraction yield reliable results on the urban traffic [10] [12] [14]. 

3. Methodology 

In this chapter, we describe the proposed framework for multiple object track-ing in detail. Our primary object of interest 
in this work is pedestrian, and we do not impose any assumptions on the target object’s size, aspect ratio, or appearance. 
Thereby, it is possible that the proposed framework can be extended to different object classes. In general, we follow the 
framework pro-posed in [36] but with few major adaptions. First, we replace the Kalman tracker in [36] with DSST tracker 
[12]. The rationale behind this is that when updating the Kalman state, one has to provide the measurement made in the 
current frame, which is, in their case, the measurement from object detector. Without the measurement from the object 
detector, the Kalman tracker would update the state merely with the pre-modeled linear motion [8]. As in our case, we do 
not assume the availability of the object detector in every frame, hence updating the Kalman tracker with only motion pre-
diction may result in unsatisfatory result. Second, we do not train an object detector specifically as in [36], but we employ 
the object detector from [3] trained on MS COCO dataset [25] where it provides multiple detectors of different base 
networks (i.e. MobileNet V1 [20], InceptionV2 [33], RFCN [11], Faster RCNN [28]) that tradeoff the speed and accuracy 
[21]. Third, in order to monitor if a tracker starts to drift or has drifted, we measure the similarity between the patches of 
the tracked target in any two consecutive frames. Fourth, to enable the tracker recover from tracking failure, we employ a 
simple person re-identification method that is as well based on the same deep features. In the pursuit of a more efficient 
implementation, the similarity is measured based on the deep features extracted from the network that has been served as 
the base network in the object detector in use. These modifications enable the proposed framework to detect and track the 
object. 

Table 3.1: Base network structure of InceptionV2 [2]. The classification layers have been removed as we adopt the 
network as a generic feature ex-traction, hence the classification layers are not needed. Please note that the input size and 
the structure are different from what is described in [33]. Our implementation follows the one provided in [2]. Figure 3.3a 
to 3.3j can be seen on page 38 to 39. 

FasterRCNN( 

 (Transform): Generalized RCNN Transform( 

 Normalize (mean= [0.485, 0.456, 0.406], std= [0.229, 0.224, 0.225]) 

 Resize (min_size= (800,), max_size=1333, mode='bilinear') 

 ) 

 (backbone): Backbone With FPN( 

 (body): Intermediate Layer Getter( 
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 (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) 

 (bn1): FrozenBatchNorm2d(64) 

 (relu): ReLU(inplace=True) 

 (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) 

 (layer1): Sequential( 

 (0): Bottleneck( 

 (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) 

 (bn1): Frozen Batch Norm2d(64) 

 (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

 (bn2): Frozen Batch Norm2d(64) 

 (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) 

 (bn3): Frozen Batch Norm2d(256) 

 (relu): ReLU(inplace=True) 

 (downsample): Sequential( 

 (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) 

 (1): Frozen Batch Norm2d(256) 

 ) 

 ) 

3.1 Update of Trackers 

Three major steps are involved in updating the trackers, (1) update the DSST tracker, (2) update the auxiliary templates of 
the targets to track, and (3) update the auxiliary templates with adaptive learning rate. As described in 2.2.2.1, DSST seeks 
the location with maximal response as the final prediction of the target location. The maximal response (or regression 
score) can, in the one hand, be interpreted as how confident the tracker is, but in the other hand, the scores are positive 
numbers which are not strictly bounded within a range, e.g. [0, 100] or [0, 1]. This makes the response difficult to be 
interpreted and served as a reliable measurement. 

 

Figure 3.4 The target’s auxiliary template may be updated with wrong image content when a tracker starts to drift since 
much background information is included within the tracker’s bounding box. 
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Figure 3.5 When a tracker starts drifting away from the target, it is likely to be stuck at a background object but still 
recognizes it as the target to track so the auxiliary template is kept updating with some learning rate. Under that case, 

sim(Ft
i, Ft

i) will retain high value and keep increasing until it saturates to a rather high value. 

4. Experiments 

4.1 Evaluation Dataset and Protocols 

MOT Challenge 2017 (MOT’17) offers 14 video sequences evenly divided into seven training and seven testing sequences 
summarized in Table 4.1. The target class of the evaluation focus is pedestrian. Particularly, in MOT’17 challenge the 
pedestrians who are static (e.g. sitting or standing without moving), behind the glasses, in the reflection, or in the vehicles 
are omitted and not considered in the evaluation. Thus, constantly moving pedestrians are the only left. The videos are 
taken in unconstrained public spaces (e.g. open streets, shopping malls, squares, etc.) that are usually crowded. Some 
cameras are installed in driving vehicles, some are carried by a walking per-son, and some are stationary. Challenges 
including wide variety of sizes, orientations, walking speeds, and heavy occlusions make the dataset realistic and to highly 
correspond to the real-world applications. 

Table 4.1: Summary of MOT’17 training and test sets. 

training set test set frame rate (fps) camera 
    

MOT17-02 MOT17-01 30 static 
    

MOT17-04 MOT17-03 30 static 
7    

MOT17-05 MOT17-06 14 dynamic 
    

MOT17-09 MOT17-07 30 dynamic 
    

MOT17-10 MOT17-08 30 static 
    

MOT17-11 MOT17-12 30 dynamic 
    

MOT17-13 MOT17-14 25 dynamic 
    

 

Noted in [27], it is difficult to quantify a MOT tracker’s performance or capture the charateristics of the tracker with a 
single metric. Among all the existing metrics that are designed for assessing MOT systems, CLEAR metrics [32] and the 
metrics introduced in [37] have been the most widely used. Please note that even these metrics are the most trendy in the 
recent MOT works and treated as the standard measures, but the research of standarizing the metrics for MOT problem is 
still ongoing [27]. In MOT’17, those metrics are used altogether to assess the overall performance while the trackers can 
be ranked by their average ranking calculated from the ranks with respect to each individual metric. In the following, we 
walk through the formal definition of every metric included in MOT’17. 
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True Positive (TP), False Positive (FP), False Negative (FN): These are the most common metrics quantifying the 
hypotheses made by the tracker. TP measures whether the hypotheses are matched to the annotations while FP measures 
if they are false alarms. FN measures the misses of the hypotheses with respect to the annotations. Either metric is counted 
when the IoU is less than 0.5 as suggested in [27]. 

Precision (Precision), Recall (Recall): Precision is defined in (4.1), reflecting how relevant the predicted bounding boxes 
are to the ground-truth bounding boxes. Recall is defined (4.2): 

  

Precision = 

    TP 

(4.1) 

 

 

  

 
TP+FP     

Recall = 

  TP 

(4.2) 

  

number of ground-truth bounding boxes 
 

 Identity Switch (IDs): IDs counts the mismatching error which happens when an annotated target x is matched to a track y 
in frame t−1 but matched to another track z, z = y in frame t. Note that IDs alone may not inform the tracker’s overall 
performance as it usually correlates with the number of annotated tracks. Hence, one can instead look at the ratio of IDs to 
the recall when needed. Note that throughout the experiments, we still report the raw IDs as Recall is also reported. 

Fragmentation (FM): A fragmentation is counted when a track is inter-rupted for some frames and recovered either with 
or without ID switches. 

Multiple Object Tracking Accuracy (MOTA): MOTA considers three sources of metrics to assess the overall accuracy of a 
MOT tracker across the frames. More formally, it is defined as 

MOTA=1− Pt (FNt +t GTt t+ 

IDs 

t) , (4.3) 

       
  FP     
 

where the subscript t denotes the frame index and GTt denotes the number of objects in frame t. Note that it is possible 
that MOTA value is below zero while its maximum is 1. 

Multiple Object Tracking Precision (MOTP): MOTP measures in aver-age across all frames how well do the tracker’s 
outputs overlap with the annotations. More formally, it is defined as 

MOTP = 

P 
t,i dt,i 

, (4.4) t ct 

 P   
where ct is the number of annotations in frame t and dt,i is the IoU value of the target i and its assigned annotation. In short, 
MOTP is used to measure the localization accuracy of a system where the detecter and the tracker work collaboratively 
with each other. 

Number of Ground-Truth Tracks (GT), Mostly Tracked (MT), Partly Tracked (PT), Mostly Lost (ML): A track is said to be 
mostly tracked if over 80% of its annotations along the track are matched correctly to the tracker’s outputs, while it is said 
to be mostly lost if under 20% of its annotations along the track is matched correctly, otherwise it is classified as partly lost. 
We define MT, PT, and ML as the percentage of each quantity (i.e. the numbers of mostly tracked, partly tracked, and 
mostly lost) to the number of grount-truth tracks, GT. 

Tracker Ranking (TR): TR does not reflect the overall performance of a MOT tracker, but provides a relative figure that 
ranks the trackers by com-paring the average ranking. The average ranking is calculated according to the rank made by 
each individual metric (IDSW, MOTA, MOTP, etc). 
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In the following section, we provide ablation studies on how do the different parameters in the proposed framework 
affect each metric. 

4.1.1 Results on MOT’17 Training Set 

Table 4.6 shows the average results on all training sequences. While the n = 1 case slightly outperforms the n = 3 case in 
FP, MT, PT, and ML, n = 3 shows stronger in MOTA, MOTP, FN, IDs, and FM. However, the performance discrepancy 
between the two cases is not that significant. Next, we break it down to show the performance on each sequence in Tables 
4.7 and 4.8. Note that here we present the results in two categories of video sequences: (1) the sequences captured by 
static cameras, and (2) the sequences captured by moving cameras. The former category is shown in Table 4.7 and the 
latter is shown in Table 4.8. The reason for the arrangement is to study if the frameworks based on different parameter 
settings would favor the different dynamics in the videos. Table 4.7 shows that the n = 3 case outperforms the other one 
consistently in MOTA, MOTP, FN, IDs, FM, and Recall. On two out of three sequences, the n = 3 case as well out performs 
the in PT and ML. As for the sequences presented in Table 4.8, one can see that on MOT17-05, the n = 1 case performs 
better in most of the metrics, i.e. MOTA, FP, FN, IDs, FM, Recall, Precision, MT, PT, and ML. On other dynamic sequences, 
the two cases perform rather similarly to each other. Later on, we study the results on the MOT’17 test set to examine if 
the proposed framework behaves similarly according to the dynamics in the videos. 

Table 4.6: Comparison of average performance of the n = 1 and n = 3 cases on seven MOT’17 training sequences. 
Parameter selection is done by the strategy introduced in Section 4.2. Bold figures indicate the winner cases. 

 MOTA MOTP FP FN IDs FM 

       

n = 1 8.1 70.7 4809 98067 340 752 

n = 3 8.3 70.9 5344 97403 226 619 

       

 Recall Precision MT (%) PT (%) ML (%)  

       

n = 1 12.0 74.0 1.8 27.8 70.3  

n = 3 13.0 73.0 1.1 25.1 73.8  

       

  

Table 4.7: The proposed framework on MOT’17 (training) static sequences (i.e. the camera is not moving). The bold figures 
indicate better performance. 

 MOT17-02 

 MOTA MOTP FP FN IDs FM 
       

n = 1 6.6 69.1 571 16734 46 92 
n = 3 7.3 69.6 602 16591 26 62 

       
 Recall Precision MT (%) PT (%) ML (%)  
       

n = 1 9.9 76.4 1.6 17.7 80.1  
n = 3 10.7 76.8 1.6 21.0 77.4  

       
MOT17-04      
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 MOTA MOTP FP FN IDs FM 
       

n = 1 4.0 69.5 539 45087 39 116 
n = 3 5.0 70.3 861 44288 18 78 

       
 Recall Precision MT (%) PT (%) ML (%)  
       

n = 1 5.2 82.1 0.0 10.8 89.1  
n = 3 6.9 79.2 0.0 13.3 86.7  

       
MOT17-09      

       
 MOTA MOTP FP FN IDs FM 
       

n = 1 25.4 72.4 303 3622 49 87 
n = 3 26.3 73.5 353 3537 33 64 

       
 Recall Precision MT (%) PT (%) ML (%)  
       

n = 1 32.0 84.9 7.7 50.0 42.3  
n = 3 33.6 83.5 7.7 50.0 42.3  

       
 
4.1.2 Results on MOT’17 Test Set 

The results on the MOT’17 test set are summarized in Tables 4.9 to 4.11. All in all, the n = 1 case slightly outperforms the n 
= 3 case in MOTA, MOTP, FP, Precision, MT, PT, and ML as shown in Table 4.9. Next, Table 4.10 shows the performance of 
the proposed framework on the static sequences in the MOT’17 test set. The n = 1 case shows stronger in MOTA in two out 
of three sequences, and consistently outperforms the n = 3 case in MOTP. The n = 3 case shows slightly better consistency 
in keeping the tracks not being fragmented, which reflects in higher MT on MOT17-01, higher PT on MOT17-03, and higher 
(MT + PT) combined on MOT17-08. As the performance on the dynamic sequences, the n = 1 case out performs another on 
every sequence in MOTA. This indicates the n = 1 setting is still favored if the dynamics in the videos is highly fluid. 

Table 4.8: The proposed framework on MOT’17 (training) dynamic sequences (i.e. camera is moving). The bold figures 
indicate better performance. 

 MOT17-05 

 MOTA MOTP FP FN IDs FM 
       

n = 1 30.9 71.6 743 3949 90 119 

n = 3 21.4 72.3 751 4619 67 173 
       

 Recall Precision MT (%) PT (%) ML (%)  
       

n = 1 42.9 80.0 5.3 51.1 43.6  

n = 3 33.2 75.4 0.6 40.6 58.7  
       

MOT17-10      
       

 MOTA MOTP FP FN IDs FM 
       

n = 1 0.7 66.2 1568 11123 61 159 

n = 3 2.3 66.4 1609 10884 48 133 
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 Recall Precision MT (%) PT (%) ML (%)  
       

n = 1 13.4 52.3 0.0 26.3 73.7  

n = 3 15.2 54.9 0.0 24.6 75.4  
       

MOT17-11      
       

 MOTA MOTP FP FN IDs FM 
       

n = 1 24.6 75.1 371 6710 36 111 

n = 3 25.3 74.2 406 6617 29 78 
       

 Recall Precision MT (%) PT (%) ML (%)  
       

n = 1 28.9 88 0.0 30.7 69.3  

n = 3 29.9 87.4 1.3 29.3 69.3  
       

MOT17-13      
       

 MOTA MOTP FP FN IDs FM 
       

n = 1 0.6 65.6 714 10842 19 68 

n = 3 0.1 65.8 762 10867 5 31 
       

 Recall Precision MT (%) PT (%) ML (%)  
       

n = 1 6.9 52.8 0.0 11.8 88.2  

n = 3 6.7 50.4 0.9 9.1 90.0  
       
 

4.2 Discussion 

In this section, we first discuss the experiments conducted in the ablation studies. The discussion continues with the 
comparison made between the proposed framework and other on-line trackers. Finally, we discuss the possible 
improvements based on the observations made in the experiments. 

4.4.1 On Ablation Studies 

In the studies, the detector threshold τ det has shown to be most impactful to all of the metrics. Note that in these 
experiments we attempt to optimize MOTA score, and thus it is shown clearly (in Figures 4.1b and 4.1e) that their FP, FN, 
MT, and PT scores are not optimized along with MOTA. Hence, it is worth mentioning that if one would like to pursue 
tracking results which can cover as many as ground-truth tracks as possible, a lower detector threshold τ det (than 0.6) 
should be applied for higher recall but in return of lower precision rate. 

Secondly, we analyze the results obtained from the static video sequences in both training and test sets shown in 
Tables 4.7 and 4.10. It is observed that while only in few static sequences does the n = 1 case outscore the another case in 
MOTA, the n = 3 case achieves higher or equal MT and PT scores combined. On the one hand, the results indicate that the n 
= 3 case, which relies more on correlation filters that localize the targets, delivers more consistent and uninterrupted 
tracks. On the other hand, the n = 1 case, which fuses the information from trackers and detectors, does not offer 
significant improvements over these metrics. While it was our belief that the detections could calibrate the predicted 
target locations and prevent the tracker from drifting away, the association process could be itself noisy and instead 
provide interference to the trackers. This can happen if the cost matrix is not well-devised in the association process (refer 
to Section 3.2.3), thus providing noisy estimation of the association cost. 
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Thirdly, to analyze the results from dynamic video sequences, two observations are worth mentioning: (1) the n = 1 
case draws significant improvement over the n = 3 case in almost all the metrics on the video MOT17-05 in the training set 
and its counterpart test video MOT17-06, e.g. 31.5% and 30.74% boosts in MOTA, respectively. By watching the contents in 
MOT17-05 and MOT17-06, one can observe that these are taken at 14 fps and possibly with a hand-held camera carried by 
a walking person. Large movement of the cameras is constantly presented and could create some difficulties for the 
trackers to track the target. (2) The n = 1 case draws significant improvement over the n = 3 case in MOTA, MT, PT, and ML 
on the test sequences. These oberservations develop the thought that if the contents in the sequences are changing rapidly 
due to high dynamics of the scene or low frame-rate production, triggering detectors more frequently is much demanding 
for consistent tracking results. 

Fourthly, the n = 1 case performs worse in IDs and FM in almost every sequence than the other case. The cause of the 
unsatisfyingly many ID switches and fragmented tracks could be correlated with the point already discussed that the 
association may not be sufficiently reliable. 

4.4.2 On Comparison with Other Online Trackers 

Previously we have shown that the proposed framework is out-performed by SORT and Deep SORT by a large margin. For 
instance, the proposed framework incurs nearly three times FN and similar FP compared with that in Deep SORT. This 
indicates that the major difficulty is the pro-posed framework missing a huge number of detections, especially the misses 
on the pedestrians beyond some certain distances. 

Figure 4.6 shows two cases where larger objects are always easier to detect than small and clutter ones. Hence, it 
could be the accuracy gap between the different detectors that leads to the performance gap between the proposed 
framework and Deep SORT (or SORT). As mentioned in [7, 36], a sophisticated object detector is much demanded in the 
tracking framework for high accuracy, e.g. simply replacing the base network used in Faster R-CNN from ZFNet [38] to 
VGG16 [31] can improve MOTA from 24 to 34. 

Despite the importance of selecting a highly accurate object detector, we emphasize that the aim of this work is to design a 
tracking framework being able to run at a reasonable speed without or with little modern GPU support. We cannot afford 
relying on the state-of-the-art object detector to boost the performance, instead we choose an object detector (introduced 
in Section 3.2.1) which runs at around 2.5fps on quad-core 2.6GHz CPU with no GPU support. In addition, we employ a 
more sophisticated single-target base tracker than the Kalman tracker used in SORT and Deep SORT, i.e. the correlation 
tracker that still ensures the real-time performance. By comparing n = 1 and n = 3 cases in the proposed framework shown 
in Table 4.12, the n = 3 case achieves comparable MOTP under similar FN with n = 1 case. This shows that the correlation 
tracker is able to localize the target accurately to some extent. However, the n = 3 case incurs higher FP which can be 
generated from the detector but can be also from the tracks that have been drifted to the wrong targets. 

4.4.3 On Possible Improvements 

We provide a generic tracking framework in this work that does not require the availability of object detector in every 
frame. However, there is much room for improvement in the major constituents. We describe two possible improvements 
as follows, ordered by the suggested importance. 

The pedestrian detector: It is of our knowledge that the detector’s performance has the most impact on tracking 
performance. While we do not want to sacrifice the inference speed too much for the detection performance, alternatively 
one can train the same SSD network specifically on the large-scale pedestrian dataset (e.g. MARS [39] and KITTI [14]) 
initialized by the parameters in the SSD network used by this work. For improving the inference speed, one can remove all 
the neurons of classes in the classification layer except the person class. Thus, the computation will not be wasted on 
inferring other classes always ignored. 

The deep features: Deep features incorporated in the framework plays an important role whenever data association takes 
place, e.g. data association for associating results from detector and trackers or for person re-identification. As shown in 
the experiment results triggering the detector more frequently does not show significant improvement over the metrics in 
general, despite that the detector we employ is of low recall rate, the association could possibly be improved by further 
reducing the false positive and false negative rates. For that, the discriminative power and descriptiveness 
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(a) A frame in MOT17-03. Only one detection is shown close to the right border. 

 

 

 

 

 

 

 

 

 

(b) A frame in MOT17-08. Five detections are shown. 

Figure 4.6: The top image shows when captured at far-range distance, the detector employed in the proposed framework 
often misses many small detections. The bottom image shows a relatively easier case for the detector as the pedestrians 
are close enough to the camera of the deep features should be improved. In addition, recall that we calculate the similarity 
between two auxiliary templates by averaging their channel-wise similarities where each template is of 24 × 24 × 64 
dimensions. However, empirically we observe that the features within some of the channels are sparse, i.e. many features 
are of zero values. On the one hand, this could lead to the curse of dimensionality where the distance measure becomes 
less meaningful. On the other hand, it may also indicate that the features we ex-tract may not be sufficiently condensed 
and informative. Hence, to improve the deep features, it is suggested that one can train a network specifically on 
pedestrian data and use it for feature extraction [36]. What is more, to mitigate the curse of dimensionality, the features 
can be extracted from a fully-connected layer near the end of the network, thus the features would be of single channel and 
lower dimensionality (e.g. 128-D) [36]. 

5. Conclusions and Future Work 

5.1 Conclusions 

We presented in this thesis an on-line detect-and-track framework which aims to be operated in real-time without or with 
minimal GPU support. Unlike most of the multiple object tracking systems, the proposed framework does not assume the 
detector’s availability in every frame as object detection is usually the largest computational burden in such systems. 
Overall, the pro-posed system works as follows. The tracker localizes the targets itself or with the information (e.g. 
estimated location of a target) periodically provided by the detector. During the course of tracking, a track of a target is 
constructed based on continually receiving above-the-threshold similarity measure between the target’s auxiliary 
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templates in the two consecutive frames. In other words, a track is interrupted if the auxiliary templates are dissimilar to 
some extent, and a track is removed from the active tracks if there are too many interrupts. However, the removed tracks 
are moved to history tracks in which the tracks still have chances to be recovered in the future frames. The proposed 
system devises Single Shot Detector and correlation filter as the object detector and tracker, respectively. All relevant 
similarity measurements are based on the distance between the features in the Euclidean space extracted from the deep 
neural net. 

We conducted experiments on the MOT’17 challenge dataset to demonstrate how the framework performs under full and 
partial availability of the detector, i.e. the detector is triggered in every frame versus in every three frames. The main 
findings in the experiments are: (1) in static sequences (where the camera is not moving) the case with partial availability 
of the detector achieves comparable or slightly better performance than the other case, however, (2) in dynamic 
sequences with a moving camera or when the dynamics in the video are high (i.e. when people are moving faster), the case 
with full availability of the detector tends to outperform that with partial availability of the detector, and (3) comparing 
the proposed framework with two other recently published on-line trackers, SORT and Deep SORT track-ers, the proposed 
framework is underperformed in the MOTA scores. These trackers, however, leverage a more sophisticated object detector 
which we cannot afford due to the excessive computational burden. 

5.2 Future Work 

Besides the improvements already suggested, it is also important to investigate how to share the features among the 
detector, tracker, and data association stages. Currently, in the proposed framework, the detector uses its own network 
model to do the inference while the tracker utilizes pixel values and a histogram of oriented gradients as the features. 
Sharing the features in similar tasks may bring several benefits, such as a higher level of generalization and less wasted 
computations, as suggested in [26, 28]. 

A recent publication proposed a two-way Siamese-like networks (i.e. two network streams fed with the frames at time t 
and (t + 1) as inputs respectively) to allow the system learn object representation and localization end-to-end [6]. Hence, it 
would be interesting to extend their work to one that learns object representation, detection, and localization given two 
consecutive frames. In addition, while the state-of-the-art object detectors pre-dominantly consider only spatial 
information from a single frame, in the context of object tracking, temporal information can be considered and possibly 
used to enhance the detection accuracy and consistency over frames if the detection and tracking are performed within a 
unified network. We leave the aforementioned as some thoughts for the future development of the project. 
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