
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 324

Data Reduction in Bug Triage using Supervised Machine Learning
Sagarsingh Chauhan1, Manoj Katre2, Prof. Tejasvi Jawalkar3

1,2UG Scholar, Computer Engineering, Dhole Patil College of Engineering, Pune, Maharashtra, India
3Professor, Computer Engineering, Dhole Patil College of Engineering, Pune, Maharashtra, India

---***--
Abstract - The rate at which new bug reports appear in the
bug repository, software companies are getting burdened.
Every company faces huge amount of time and cost
consumption to fix this bugs. The present technique gives
solution which reduces this time cost in manual work. Text
classification techniques are applied to conduct automatic bug
triage, which use huge bug repositories due to which there is
tremendous time consumption in the process. To eliminate this
time consumption proposed system suggest data reduction for
bug triage to create bug repository with small scale and
quality set of bug data by removing bug reports and words
which are not informative and redundant. Data reduction can
be implemented by using techniques such as instance selection
and feature selection. The resultant bug repository arrives and
the classifier produced by the machine learning technique
suggests a developer suitable to resolve the specific bug.
Classification can be done by using supervised and
unsupervised learning; this will be resulting in high prediction
accuracy while reducing training and prediction time

Key Words: (Bug trigging, text classification, data reduction,
mining software repositories, machine learning algorithm.

1. INTRODUCTION

Many software companies spend a lot of money repairing
project errors. Large software projects have a well-managed
error repository that contains all error information. The
initial step in the error repository is to handle software
errors. Each software error in the error repository includes a
detailed report called error data. The error report includes
text error information and updates based on the status of the
error correction. Traditional software analysis is not fully
adapted to complex and large-scale data in software
repositories.

Numerous organizations spend overwhelming sum in fixing
the bugs of the undertaking. Huge programming ventures
have an all around kept up bug store that holds all the data
identified with bugs. Beginning advance in bug archive is to
oversee programming bugs. Every product bug in bug
storehouse has a point by point report called as bug
information. The bug report comprises of literary data of the
bug and the reports based on the status of bug settling.
Customary programming investigation isn't completely
suitable for the expansive scale and complex information in
programming software.

For the correction of bugs, the classification of bugs is an
important step; delivers errors to an important developer to
solve it. Once a developer is assigned to the error report, he

tries to resolve the error. For open source programming
software, many errors are created day after day, making the
triage process extremely complicated.

A. Feature Selection

The primary target of highlight determination calculation is
to expel the unimportant and excess words from the chose
data set. An element choice calculation by and large
comprises of steps, for example, subset age, subset
assessment, halting basis, and result approval. Highlight
choice method is utilized to expel the words in bug reports
which are repetitive and non informative.

B. Instance Selection

The goal of the instance selection algorithm is to eliminate
noisy data from a data set while maintaining the integrity of
the actual data set. The instance selection technique is used
to minimize the repeated number of instances by eliminating
reports of noisy and collection errors.

I. 2. LITERATURE SURVEY

1. Jifeng Xuan, He Jiang, Yan Hu, Zhilei Ren, Weiqin Zou,
Zhongxuan Luo, and Xindongn Wo(2005), “Towards
Effective Bug Triage with Software Data Reduction
Techniques”, In this paper define the benefits of the data
reduction techniques. They introduce algorithms which are
used to word dimension and bug dimension. The main
drawback of this paper is, not all the noise and redundancy
are removed as well as the data quality ispoor.0

2. S. Artzi, A. Kie_zun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and
M.D. Ernst(2010)“Finding bugs in web applications using
dynamic test generation and explicit-state model checking” ,
they introduces a dynamic test generation technique for the
dynamic Web applications. The cinque uses both combined
concrete and symbolic execution and explicit-state model
checking. This technique generates tests automatically, by
capturing logical constraints on inputs it runs the tests, and
minimizes the conditions on the inputs so that resulting bug
reports are small and useful in finding and fixing the
underlyingfaults.

3. John Anvik, Lyndon Hiew and Gail c. Murphy “Who should
fix This Bug?” In this paper, author represent a semi-
automated approach propose to simplicity one part of this
process, the task of reports to a developer. The approach
uses a machine learning algorithm to the open bug
repository to study the kinds of reports each developer

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 325

resolves. When a new report arrives, the machine learning
technique suggests developers suitable to resolve the bug.

4. S. Breu, R. Premraj, J. Sillito, and T. Zimmermann(2010)
“Information needs in bug reports: Improving cooperation
between developers and users,” In this base paper we learns
the relationship between developer and user we have
quantitatively and qualitatively examine the questions
fromthe MOZILLA and ECLIPSE projects. We categorized the
questions and examine response and time by category and
project. In this paper results show that the role of users goes
more than simply reporting bugs: their active and ongoing
participation is important for making progress on the bugs
they report.

5.G. Jeong, S. Kim, and T. Zimmermann (2009) “Improving
bug triage with tossing graphs,” author propose a graph
based model Markov chains, which captures bug tossing
history. This model has several pleasing qualities. First, it
displays developer networks which can be used to find out
team structures and to find suitable experts for a new task.
Second, it helps to assign expert developers to bug reports.
In our experiments with 445,000 bug reports, our model
reduced tossing events, by up to 72%.In addition the model
increased the prediction accuracy by up to 23 percentage
points compared to traditional bug triaging approaches.

6. D. Carbamic and G. C. Murphy(2004) “Automatic bug
triage using text categorization,” author propose to apply
machine learning techniques to assist in bug triage by using
text categorization to predict the developer that should work
on the bug based on the bug’s description. Our approach
demonstrates on a collection of 15,859 bug reports from a
large open-source project. Our evaluation shows that using
supervised Bayesian learning, can correctly predict 30% of
the report assignments to developers.

7. C. Sun, D. Lo, S. C. Khoo, and J. Jiang(2011) “Towards more
accurate retrieval of duplicate bug reports,” author deals
with the bug tracking system, different testers submit
multiple reports on the same bugs that they encounter,
referred to as duplicates, which may cost more efforts in
triaging and fixing bugs. In order to detect duplicates
accurately, we propose a retrieval function (REP) to measure
the similarity between two bug reports. It uses the
information available in a bug report including the similarity
of textual content in summary and description fields, also
similarity of non-textual fields such as product, version, and
component.

3. ARCHITECTURE FOR BUG TRIAGE SYSTEM

Fig-1 ARCHITECTURE FOR BUG TRIAGE

Reducing data for bug triage plans to build lower and better
bug information by eliminating bug reports and
unnecessary, repetitive words. To reduce the word
dimension and the bug dimension, existing techniques are
used such as instance selection and feature selection. The
reduced bug data contains fewer bug reports and fewer
words than the main bug data and gives virtually identical
information about the main bug data. The proposed system
evaluates the diminished bug data, which is the size of an
illuminating buildup and the accuracy of bug triage.

In the proposed framework the info is as bug informational
index. The bug informational Index comprises of bug report
and the subtle elements of the designer who have chipped
away at the particular bug. The bug report is for the most
part isolated in two sections: Summary and Description In
bug measurement we diminish loud or copy bug answer to
diminish the quantity of verifiable bug. In word
measurement to diminish boisterous and copy words. In the
framework bug triage use to anticipate the right engineer
who can settle the bugs. In framework bug stores, a few
designers just settled not very many bugs. Such inert
engineer does not give adequate data to task revise
designers. In proposed framework we dispense with the
engineers, who have settled under 10 bugs.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 326

 MODULES

The contribution of the proposed framework is as bug
informational collection. The bug informational index
comprises of bug report of huge open source venture. We
likewise get the all subtle elements of the engineer who have
taken a shot at the individual bug. The bug report is
principally isolated in two sections: I. Summary and II.
Description. The framework is gives anticipated outcomes as
yield when decreased informational index.

The flow of the architecture, as given below:

 Dataset:

Dataset used for this project is a Bug dataset collected from
two large open source projects, namely Eclipse and Mozilla.
Eclipse is multi-language software development
environment, including an Iterated Development
Environment (IDE) and an extensible plug-in system; Mozilla
is an Internet application suit. Up to December 31, 2011,
366,443 bug reports over 10 years have been recorded to
Mozilla. In this project 37,745 number of Bug reports are
collected in continues manner. For each Bug report
attributes are considered such as Bug ID, Summary,
Description, and Category of each Bug.

Data Reduction based Algorithm:

To perform data reduction combined approach of instance
selection and feature selection algorithm is used. In instance
selection algorithm it reduced the dimensionality of
vocabulary but also used to irreverent terms out of that huge
data set. It also reduced the data by removing noisy and
irreverent data and provides us with good quality of data. .To
select the reduced set of data a preprocessing technique or
algorithm feature selection algorithm are used on such large
scale data. Feature selection reduces the dimensionality and
thus contributes to accuracy and efficient results.

To remove irrelevant and duplicate words in a dataset uses
feature selection algorithm. Removing words which is not
informative accuracy can be increased of Bug triage. The
algorithmic steps are as follow: First select a minimum set of
features. Eliminating # of patterns in the data which are easy
in understanding. Create new attribute. The attributes catch
the essential data. Use the littlest portrayal which is
sufficient to settle the task. The estimation of feature weight
updates midpoints of the contribution of all the hits and all
the misses,

4.RESULTS AND DISSCUSION

4.1 Dataset Loading

In this experiment Dataset is being collected from the Eclipse
bug data site named ‘Bugzilla’ in csv format which is being
loaded in the sql database in order to make it appropriate for
applying the preprocessing steps to obtain the desired
textual data.

4.2 Preprocessing of Dataset

In this Experiment those Bug reports are chosen, which are
fixed (based on the items status of bug reports). Moreover, in
bug repositories, several developers shave only fixed very
few bugs. Since bug triage aims to predict the developers
who can fix the bugs, it follows the existing work to remove
unfixed bug reports, e.g. the new bug reports or will-not-fix
bug reports.

4.3 Data Reduction

In this experiment, data is being fetched from the database
and been applied the pre-processing steps, that is taken
placed. Now the data is prepared for feature extraction i.e.
word dimension reduction is applied on the data in order to
reduce the words attributes from the description.

4.4 Detection of Bug category and Assignment of
Developer

In this experiment wordsets are formed and labelled
according to the name of category of bugs. When new bug is
inserted to detect its category it is taken as string and after
tokenization of each word is compared with the wordset and
Term frequency is calculated. Term frequency is shown in
front of each category. After calculating Term frequency,
Majority score is calculated among all categories and
category of Bug is defined by Majority score.

4.5 Data analysis using K-Nearest Neighbor

Developers history data is fetched from database and
according to Analysis Criteria developers are suggested.
Clustering level defined number of developers which are
sorted using KNN. Euclidian distance is calculated by
considering two parameters number of year experience and
rating of developer. Then resulted developers are sorted in
ascending order, the lowest distance is considered first and
according to cluster level N, first N developers are suggested
from sorted developers.

5. CONCLUSIONS

Existing systems have disadvantages that fresh bugs are
manually triaged by an expert developer. Due to the large
number of regular bugs and the lack of expertise of all the
bugs, manual bug triage is expensive in time charge and low
in accuracy. On the other pointer, software techniques in
those systems suffer from the little eminence of bug data.

This Dissertation work combines feature selection with
instance selection which is used to reduce the scale of bug
data sets as well as recover the data quality. Firstly, bug data
set scale is reduced and the classifier produced by the
machine learning technique suggests a developer suitable to
resolve the specific bug. This dissertation results in assigning
new bug to appropriate developer automatically and
automatic bug triaging is achieved which eliminate cost of
manual bug assignment.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 327

6. REFERENCES

1. Jifeng Xuan, He Jiang, Yan Hu, Zhilei Ren, Weiqin Zou,
Zhongxuan Luo, and Xindong Wu,” Towards Effective Bug
Triage with Software Data Reduction Techniques” IEEE
transactions on knowledge and data engineering, vol.27, no.
1, January2015

2. S. Artzi, A. Kie_zun, J. Dolby, F. Tip, D. Dig, A. Parrikar, and
M. D. Ernst, “Finding bugs in web applications using dynamic
test generation and explicit- state model checking,” IEEE
Softw., vol. 36, no. 4, pp. 474–494, Jul./Aug. 2010.

3. John Anvik, Lyndon Hiew and Gail C. Murphy “Who Should
Fix This Bug? “Department of Computer Science University
of British Columbia @cs.ubc.ca

4. S. Breu, R. Premraj, J. Sillito, and T. Zimmermann,
“Information needs in bug reports:Improving cooperation
between developers and users,” in Proc. ACM Conf.
Computer Supported Cooperative Work, Feb. 2010, pp. 301–
310.

5. G. Jeong, S. Kim, and T. Zimmermann, “Improving bug
triage with tossing graphs,” in Proc. Joint Meeting 12 th Eur.
Software Engineer Conference 17th ACM SIGSOFT Symp.
Found. Software Engineer, Aug. 2009, pp.111–120.

6. D. Cubrani. c and G. C. Murphy, “Automatic bug triage
using text categorization,” inProc. 16th Int. Conf. Softw.
Engineer Knowl. Engineer, Jun. 2004, pp. 92–97.

7. C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more
accurate retrieval of duplicate bug reports,” in Proc. 26 th
IEEE/ACM Int. Conf. Automated Softw. Engineer, 2011,
pp.253–262.

