
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 1039

Performance Comparison of Real-Time Garbage Collection in the Sun
Java Real-Time Systems with Different Garbage Collection Techniques

Amandeep kaur1, Balpreet kaur2, Rupinder kaur3

1,2,3Assistant Professor, Dept. of CSE, BBSBEC, Fatehgarh Sahib
---***--
Abstract - Garbage collection performances vary when we use
reference counting technique. Generational garbage collection
worst case allocation characteristics are different from
reference counting. In this review paper, a performance
comparison has been made using the default and the proposed
RTGC(Real time garbage collection) approach.

Key Words: Real time garbage collection, Reference
counting

1. INTRODUCTION

Sun Java Real-Time System (Java RTS) is Sun's commercial
implementation of the Real-Time Specification for Java
(RTSJ), or JSR 1.

Starting with Sun Java RTS 2.0, a new real-time garbage
collector (RTGC), based on Henriksson's algorithm, is
available. The garbage collector runs as one or more real-
time threads (RTTs). These run at a priority that is lower
than all instances of NoHeapRealtimeThread (NHRT) and
that may be lower than some RTTs as well, so that critical
threads may preempt the collector. In this way, critical
threads are shielded from the effects of GC.

By default, the garbage collector runs at its initial priority,
which is below that of the noncritical real-time threads. But
as memory grows short, the VM will boost or raise the
priority of the collector to the maximum configured priority.

1.1 Thread distinction in java

The important point about the RTGC provided with Java RTS
is that it is fully concurrent, and it can thus be preempted at
any time. There is no need to run the RTGC at the highest
priority, and there is no stop-the-world phase, during which
all the application's threads are suspended during GC.

RTGC starts executing at its initial priority and is preempted
by a high-priority thread. When that thread stops, the RTGC
runs again but is again preempted. Finally, if the running
threads are allocating memory and the remaining memory
becomes low enough, the RTGC is boosted to its maximum
priority, where it is preempted only by critical threads.

Fig -1: thread distinction in java

1.2 Default RTGC using one and two CPUs

On a multiprocessor, one CPU can be doing some GC work
while an application thread is making progress on another
CPU. In Figure 6, the critical NHRTs are running on a
separate CPU and therefore do not pre-empt the RTGC. The
RTGC runs to completion without its priority having to be
boosted.

Fig -2: default real time garbage collection in one CPU

The RTGC considers that the criticality of an application's
threads is based on the threads' respective priorities and
ensures hard-real-time behavior only for real-time threads
at the critical level, while trying to offer soft-real-time
behavior for real-time threads below the critical level.

This reduces the total overhead of the RTGC and ensures that
the determinism is not affected by the addition of new low-
priority application threads. This makes the configuration
easier because there is no need to study the allocation

http://jcp.org/en/jsr/detail?id=1
http://java.sun.com/developer/technicalArticles/Programming/rt_pt1/index.html#memory_management

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 1040

behavior of an application in its entirety in order to
configure the RTGC.

Fig -3: default real time garbage collection in two cpus

2. The proposed approach

Java possesses many advantages for embedded system
development, including fast product deployment, portability,
security, and a small memory footprint. As Java makes
inroads into the market for embedded systems, much effort is
being invested in designing real-time garbage collectors. The
proposed garbage-collected memory module, a bitmap-based
processor with standard DRAM cells is introduced to improve
the performance and predictability of dynamic memory
management functions that include allocation, reference
counting, and garbage collection. As a result, memory
allocation can be done in constant time and sweeping can be
performed in parallel by multiple modules. Thus, constant
time sweeping is also achieved regardless of heap size. This is
a major departure from the software counterparts where
sweeping time depends largely on the size of the heap. In
addition, the proposed design also supports limited-field
reference counting, which has the advantage of distributing
the processing cost throughout the execution.

3. Results: Performance comparison

By doing reference counting operation in a coprocessor, the
processing is done outside of the main processor. Moreover,
the hardware cost of the proposed design is very modest
(about 8,000 gates). Our study has shown that 3-bit reference
counting can eliminate the need to invoke the garbage
collector in all tested applications. Moreover, it also reduces
the amount of memory usage by 77 percent.

Fig -4: default real time garbage collection in two cpus

REFERENCES

1. D.F. Bacon, P. Cheng, and V.T. Rajan, “A Real-Time
Garbage Collector with Low Overhead and
Consistent Utilization,” In Proceedings of the ACM
Principles of Programming Languages (POPL 03),
pp. 285-298, 2003.

2. Roger Henriksson. “Scheduling garbage collection in
embedded systems.” Phd thesis, Lund Institute of
Technology, 1998.

3. Scott Nettles and James O’Toole.”Real-Time
replication garbage collection. Pages 217-226. ACM
Press, 1993.

4. Fridtjof Siebert.” Real –Time garbage collection in
multi-threaded systems on a single processor”.

5. Fridtjof Siebert. Hard real-time garbage collection.
Phd thesis, Universitat Karsruhe, 2002.

