
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 956

SELF DRIVING CAR USING DEEP Q-LEARNING

Akhilesh Thete1, Chinmay Toley2, Shreyas Inamdar3

1,2,3NBN School of Engineering & Technology, Pune
--***---
Abstract: In this paper, a self-driving car prototype using
Deep Neural Network on Simulator is proposed. Self-
driving cars are one of the most increasing interests in
recent years as the definitely developing relevant
hardware and software technologies toward fully
autonomous driving capability with no human
intervention. Level-¾ autonomous vehicles are potentially
turning into a reality in the near future. Deep Neural
Networks (DNNs) have been shown to achieve significant
Performance in various perception and control tasks in
comparison to other techniques in the latest years. The key
factors behind these impressive results are their ability to
learn millions of parameters using a large amount of
labeled data. Deep Q-Networks (DQN), a reinforcement
Learning algorithm that achieved human-level
performance across various fields

Introduction

Self-driving cars have been one of the most promising
prospects for Artificial Intelligence research, it would be
the greatest technological revolution of the near future.
There are several technologies making up an
autonomous vehicle - laser, radar, GPS, image processing
computer vision, machine vision, etc. Compared with
other sensors like LIDAR or ultrasonic, cameras are
lower-cost and can provide more information on the
road (traffic signs, traffic lights, pedestrians, obstacles,
etc. Reinforcement learning (RL) agents incrementally
update their parameters (value function or model) while
they observe a stream experience. In their simplest form,
they discard incoming data immediately, after a single
update

Literature Review

2.1 Prioritized experience replay”, Tom Schaul, John
Quan, Ioannis Antonoglou and David Silver “This paper
demonstrates the effectiveness of navigating
autonomous vehicles using reinforcement learning
methods. We have shown that Deep Q-Networks can be
an effective means of controlling a vehicle directly from
high-dimensional sensory inputs, and we used a novel
combination of CNN and RNN networks to achieve this.

2.2 “Real time self-driving car using Deep Neural
Network”, Truong-Dong Do, Minh-Thien Duong, Quoc-Vu
Dang and My-Ha Le - The results obtained from the
experiments look promising which suggests that
alancing the Exploration/exploitation ratio based on
value differences needs to be further investigated.

2.3 Open CV based autonomous RC Car”, B,Sabith, K.Akila,
S,Krishna Kumar, D.Mohan.– “The evidence from
neuroscience suggest that a prioritization based on
episodic return rather than expected learning progress
may be useful too Atherton et al. 2 1 Olafsd ottir et al.
(2015); Foster & Wilson (2006).

2.4 “Formulation of Deep Reinforcement Learning
Architecture Toward Autonomous Driving for On-Ramp
Merge”, Pin Wang, Ching-Yao Chan In this work, they
propose a Deep Reinforcement Learning architecture for
learning an on- ramp merge driving policy.

Analysis Model: SDLC Model to be applied

 The Waterfall Model is sequential design process, often
used in Software development processes, where progress
is seen as flowing steadily download through the phase of
conception, Initiation, Analysis, Design, Construction,
Testing, Production/Implementation and Maintenance.
This Model is also called as the classic Life cycle model as it
suggests a systematic sequential approach to software
developments. This one of the oldest models followed in
software engineering. The process begins with the
communication phase where the customer specifies the
requirements and then progress through other phases like
planning, modeling, construction and deployment of the
software.

 1. Communication

In communication phase the major task performed is
requirement gathering which helps in finding out exact
need of customer. Once all the needs of the customer are
gathered the next step is planning.

 2. Planning

In planning major activities like planning for schedule,
keeping tracks on the processes and the estimation related
to the project are done.

Planning is even used to find the types of risks involved
throughout the projects. Planning describes how technical
tasks are going to take place and what resources are
needed and how to use them.

 3. Modeling

This is one the important phases as the architecture of the
system is designed in this phase. Analysis is carried out
and depending on the analysis a software model is
designed.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 957

Different models for developing software is created
depending on the requirements gathered in the first
phase and the planning done in the second phase.

 4. Construction

The actual coding of the software is done in this phase.
This coding is Done on the basis of the model designed in
the modeling phase. So in This phase software is actually
developed and tested.

 5. Development

 In this last phase the product is actually rolled out or
delivered installed at customers end and support is given
if required. A feedback is taken from the customer to
ensure the quality of the product. From the last two
decades Waterfall model has come under lot of criticism
due to its efficiency issues. So let’s discuss the
advantages and disadvantages of waterfall model.

Implementation Planning

Purpose

Autonomous cars create and maintain a map of their
surroundings based on a variety of sensors situated in
different parts of the vehicle. Radar sensors monitor the
position of nearby vehicles. Video cameras detect traffic
lights, read road signs, track other vehicles, and look for
pedestrians.

 3.5.2 Domain Area of Project

 Artificial intelligence (AI) is the simulation of human
intelligence processes by machines, especially computer
systems. These processes include learning (the
acquisition of information and rules for using the
information), reasoning (using rules to reach
approximate or definite conclusions) and self-correction.

 3.5.3 Feasibility Study

 This project studied the feasibility of constructing an
autonomous vehicle controller based on probabilistic
inference and utility maximization. Several theoretical
and algorithmic advances were required in order to
create an inference system capable of handling vehicle
monitoring in a real-time fashion. New methods were
also developed for learning probabilistic models from
data, and for learning control policies given
reward/penalty feedback

 3.5.4 Risk Management

An Unregulated Industry. More Accidents Blending Self-
Driving and Manual Cars Vulnerability to Hacking &
Remote Control. Computer Malfunctions.

Deep Q Learning:

With Deep-Q Learning we can program AI agents that can
operate in environments with discrete actions spaces. A
discrete action space refers to actions that are well-
defined, e.g. moving left or right, up or down. Atari’s
Breakthrough is a typical example of an environment with
a discrete action space. The AI agent can move either left
or right. The movement in each direction is happening
with a certain velocity. If the agent could determine the
velocity, then we would have a continuous action space
with an infinite amount of possible actions (movement
with a different velocity). This case will be considered in
the future.

Conclusion

This project has demonstrated the effectiveness of
navigating autonomous vehicles using reinforcement
learning methods. We have shown that Deep Q-Networks
can be an effective means of controlling a vehicle directly
from high-dimensional sensory inputs, and we used a
novel combination of CNN and RNN networks to achieve
this. While currently it seems as though a well-designed,
low-dimensional discrete state-space agent is able to more
stably control a car compared to a more complex DQN
agent, we believe our work could be extended in several
ways. Namely, it would be nice to find a better alternative
of defining our reward function that still maintains the
careful balance between maximizing speed while
guaranteeing car stability. Similarly, it would be
interesting to generalize our work to continuous action
spaces. Despite these limitations, we are still proud that
our agents were able to successfully control a car without
any explicit notion of the car’s underlying dynamics.

REFERENCES

 [1] Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet
classification with deep convolutional neural
networks," in Advances in neural information processing
systems, 2012, pp. 1097- 1105.
 [2] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E.
Tzeng, and T. Darrell, "Decaf: A deep convolutional
activation feature for generic visual recognition," in
International conference on machine learning, 2018, pp.
647-655.
 [3] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich
feature hierarchies for accurate object detection and
semantic segmentation," in Proceedings of the IEEE
conference on computer vision and pattern
recognition, 2014, pp. 580-587.
 [4] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson,
F. D. Smith, A. Berg, and S. Wang, "An evaluation of the
NVIDIA TX1 for supporting real-time computer-vision
workloads," in Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2017 IEEE,
2017, pp. 353-364.
 [5] https://en.wikipedia.org/wiki/Deep_learning

